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Abstract

Electronic Fuel Injection systems are very important components in today’s automotive
industry. Its use on modern engines allows manufactures to develop new engine designs
while increasing engine efficiency and lowering fuel consumption and exhaust gas emissions.

EFIl systems also increased engine reliability by providing a smooth start and run under most
weather conditions.

The goal is to replace the original Engine Control Unit present in the Honda F4i engine with a
fully programmable, low cost ECU based on a standard electronic circuit based on a
dsPIC30f6012A that can be mass produced and used in many of the onboard systems
present in the car. The ECU must make use of all the temperature, pressure, position and
speed sensors as well as the original injectors and ignition coils that are already available on
the F4i engine.

The ECU must provide the user access to all the maps and allow their full customization

simply by connecting it to a PC. This will provide the user with the capability to adjust the
engine’s performance to its needs quickly and easily.
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Resumo

Os sistemas de Injecgdo Electrénica de combustivel sdo, nos dias de hoje, um dos
componentes mais importantes na industria automével. O seu uso nos motores modernos
permitem aos fabricantes desenvolver novas geometrias para os motores ao mesmo tempo
que reduzem os consumos de combustivel e a emissdo de gases poluentes.

Os sistemas de Injeccdo Electronica também permitiram um aumento da fiabilidade ao
permitir um funcionamento e um arranque suaves sob quase todas as condigbes
atmosféricas.

O objectivo é substituir a Unidade de Controlo do Motor ja existente no motor F4i da Honda
por uma Unidade que possa ser totalmente reprogramada e de baixo custo baseada num
circuito electréonico standard com um dsPIC30f6012A que possa ser produzido em massa e
aplicado aos mais variados sistemas presentes no carro. A Unidade de Controlo do Motor
deve fazer uso dos sensores de temperatura, pressao, posi¢cao e velocidade assim como dos
injectores e velas ja disponiveis no motor F4i.

A Unidade de Controlo do Motor deve permitir o total acesso e customizagcdo dos seus

mapas simplesmente ligando-a a um PC. Isto permite ao utilizador ajustar a performance do
motor as suas necessidades de forma rapida e simples.

Palavras Chave:

Injecgéo Electronica , Unidade de Controlo do Motor, Formula Student
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1. Introduction

This project is part of the Formula Student project being developed at Instituto Superior

Técnico that for the European series of the Formula Student competition.

Created by the Institution of Mechanical Engineers (IMechE), the Formula Student
competition follows the model implemented in the American series and strives to promote
careers and excellency in engineering by challenging students to design, build and develop a
prototype based on a autocross or sprint racing car with a cost below €21000 and for a
production of 1000 units a year while being reliable and easily maintained. During the
competition the cars are submitted to a series of tests to evaluate their performance and
design, while being judged by engineers from renowned companies in the automotive and

aeronautical industries.

The car used (Figure 1.1) has a fibreglass body and uses a Honda F4i engine taken from the
Honda CBR 600.

- - -— ——

- —

Figure 1.1 - FSTO03.

The F4i engine is an in-line, 4-cylinder engine with 599 cubic centimetres and electronically

controlled injection.

1.1 Purpose and motivation

While being able to change how an engine behaves under different loads is a very important
asset, most current Engine Control Units (ECU) on the market are very expensive and require
the use specialized tools and parts due to their complexity. Remapping stock ECUs can also
be very hard or impossible due to the manufacturers warranty limitations and their ECU’s

internal design.



The construction of a simple ECU based on a standard electronic circuit that can be mass
produced and used in different systems of the vehicle could help bring down the overall cost
of the car while providing an efficient and reliable way of commanding the engine and

ensuring a smooth operation.

The use of an ECU made specifically for a certain engine would also ensure a perfect
compatibility with all the existing sensors and the possibility to add additional sensors and

actuators as required or desired.

1.2 Objectives

This paper’s objective consists in designing and building an Engine Control Unit (ECU) for a
Honda CBR 600R f4i engine by using a standard electronic circuit that contains a
dsPic30f6012A 16-bit microprocessor (Figure 1.2).
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Figure 1.2 - Standard electronic circuit for the ECU.

The ECU must allow the quick reprogramming of the injection maps while using all the
sensors and actuators already available in the engine. The ECU must also exchange
information via CAN-Bus (Controller Area Network Bus) to a PC enabling the remapping of
the ECU on the fly.



2. State of the art

Since its creation, the internal combustion engine has undergone constant changes on its
design. The introduction of electronic systems inside of the engine allowed manufacturers a
have bigger control over the engine and achieve lower emissions of polluting agents wile
increase the performance and efficiency.

Today’s electronic fuel injection systems provide smooth engine start and operation even in
extreme cold and extreme heat conditions. In motorsport, electronic fuel injection systems
allow engineers to adapt the cars to the demands of the circuit whether it demands a greater

response at low engine speed or greater top speed.

Advanced electronic engine management systems allow users to fine tune nearly every
aspect of the engine’s operation. And later high-end products can be used in Variable Valve
Timing (VVT) engine, work with multispark systems (multiple sparks are created in rapid
succession to improve fuel combustion at low engine speed and cold engine temperatures)

and adapt to new types of engine and manifold designs.

New types of sensors can be connected to the ECU. Knock sensors correct ignition timing
and prevent the fuel’'s premature ignition, sensors placed on turbocharged engines help
control turbo boost. Some ECU’s can also store the data collected from their sensors in rates

from 20 to 200 times per second and even add GPS data for later analysis.

There is also an open-sourced ECU that can be fully modified to suit the users needs and

specifications.

On the academic level there have been several takes on electronic engine management
systems including the construction of an Electronic Control Unit (ECU) for the Shell Eco-
marathon project that pursued the lowest possible fuel consumption possible and the ECU for

a Volkswagen beetle engine.






3. Electronic Fuel Injection

Due to the growing concern of fuel economy and lower emissions, Electronic Fuel Injection

(EFI) systems can be seen on most of the cars being sold today.

EFI systems provide comfort and reliability to the driver by ensuring a perfect engine start
under most conditions while lessening the impact on the environment by lowering exhaust

gas emissions and providing a perfect combustion of the air-fuel mixture.

In order to ensure the efficient operation of the engine, the EFI system must collect
information from a range of sensors located inside the engine, process the information in the
ECU and make the necessary adjustments to the quantity of fuel injected and the ignition

timing.

With this information the ECU can determine the load set upon the engine and make the
necessary adjustments in the fuel injection to ensure a smooth and quick response to the
load applied.

In order to better understand how the EFI system works, it can be separated in three parts:
the sensors, the ECU and the actuators. Figure 3.1 represents how these parts are

connected.

[ User input sensors> ( Engine sensors "'.f" ey

ECU

< CAN-Bus Actuators )

Figure 3.1 - EFI system diagram.

—s,

The sensors are used to monitor the status of the engine are Engine Speed, Camshaft
Position, Throttle Position, Manifold Absolute Pressure (MAP), Engine Coolant Temperature
and Intake Air Temperature. The actuators are comprised of the injectors and ignition coils.

3.1 Sensors

For the ECU to respond correctly to the engine’s condition it must rely on an array of sensors.
These sensors provide information on temperatures, speed and position. Figure 3.2 shows

the flow of information from the sensors to the ECU.



<: Engine Speed |

/1\ Camshaft Position
IM:> ECU /1\ Manifold Absolute Pressure
/1\ Engine Coolant Temperature
/1\ Intake Air Temperature

Figure 3.2 - Sensor flow of data.

3.1.1. Engine Speed Sensor

The Engine Speed Sensor relays the engine’s current angular speed, in Revolutions Per
Minute (RPM), to the ECU. It uses a magnetized cog with 12 teeth attached to the engine’s

crankshaft (Figure 3.3) and a Hall effect sensor.

Figure 3.3 — Enéiﬁe S;eed sensor.

When one of the cog’s teeth passes near the near the sensor it creates a magnetic field (B)

perpendicular to the sensor’s surface (Figure 3.4).

Fig 3.4 — Hall effect sensor’s surface [1].

This magnetic field causes a voltage difference across the sensors surface known as the Hall
voltage (V). This voltage is proportional to the current passing through the sensors surface

() times the magnetic field (B) (Equation 1) [1].



V, <IXB (Equation 1)

The Hall voltage is then amplified and sent through a comparator (Figure 3.5) so that we

obtain a pulse at the sensor’s output pin every time one of the cog’s teeth passes near the
sensor’s surface (Figure 3.6).
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Figure 3.5 — Engine speed sensor internal conditioning circuit.
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Output Voltage (V)

t
Figure 3.6 — Engine speed sensor output.

When reaching the ECU, the voltage output of the sensor is too high to be placed directly on
the dsPIC’s pins and therefore must be lowered to a range between 0 and 5 Volts. In order to

do this the signal is connected to a zener diode (Figure 3.7) and lowered from 12 Volts to 4,7
Volts.

RPM in Rl RPM out

AAA
VW

Resl
1K

Figure 3.7 — Engine speed signal conditioning.

The signal is then monitored by the ECU that determines the signal’s frequency (fs) by

counting the time interval between pulses. The engine’s speed in RPM is obtained using
Equation 2.

RPM =5 X f, (Equation 2)



3.1.2 Camshaft Position Sensor

The Camshaft Position Sensor works the same way as the Engine Speed Sensor as it also
uses a cog and a Hall effect sensor. The main difference between the sensors is the cog
used.

The cog used by the Camshaft Position Sensor is attached to the engines camshaft (Figure
3.8) and only has 3 teeth designated by Top Dead Center (TDC), Bottom Dead Center (BDC)
and reference (Figure 3.9).

Figure 3.9 — Camshaft Position sensor’s cog detail.

TDC occurs when cylinders 1 and 4 reach the highest point inside the combustion chamber
(Figure 3.10a) and cylinders 2 and 3 are at their lowest point (Figure 3.10b).



(@)

]
a)TDC  b) BDC

Figure 3.10 — Cylinder position: a) TDC b) BDC.

BDC occurs 180° after TDC and represents the opposite point of TDC. In BDC cylinders 2

and 3 are at the highest point and 1 and 4 are at the lowest.

Finally, the reference pulse occurs slightly after BDC to allow the ECU to distinguish between
TDC and BDC pulses. The reference pulse also provides the ECU with a way to determine

the camshaft’s position at engine start.

The Camshaft Position Sensor output is shown in Figure 3.11.

12 4

Output Voltage (V)

t
Figure 3.11 — Camshaft Position sensor output.

The Camshaft Position Sensor uses the same signal conditioning circuit as the Engine Speed
Sensor (Figure 3.5) and the ECU requires a full camshaft revolution to determine it's position
during engine start.

Since the camshaft and the crankshaft are mechanically connected and 1 revolution of the
crankshaft equals 1 revolution of the camshaft, it is possible to determinate the camshaft’s

position by comparing the time between impulses of both sensors (Figure 3.12).

Ts
Engine speed
sensor . JUUUUULHUHUUULL
Camshaft position
sensor _Jj LJ Fl_

Tewm
Figure 3.12 — Engine Speed and Camshaft Position signals.

If we ignore, for now, the presence of the reference pulse it is possible to see that TDC and
BDC pulses occur every 6 pulses from the Engine Speed Sensor, in other words, the

camshaft’'s sensor period is 6 times the period of the crankshaft’s sensor (Equation 3).



T, =6%xT; (Equation 3)

Taking the reference pulse back into consideration, the pulse sequence outputted during the

first camshaft revolution can have 3 distinct orders (Figure 3.13).

-

Engine speed <_$)
sensor S UUUUUUUUULL
o ] L

Ne—
a

T: Tz
b)
H
T Tz
o ] ] [
Ts T:

Figure 3.13 — possible sequences during start with T1 and T2 and comparisons

If T1 is equal to the camshaft period (without reference pulse) determined from the Engine
Speed sensor output, then the last pulse registered will be the reference and will be followed
by the TDC pulse (Figure 3.13a).

In the event that T1 does not match the camshaft’s period, the ECU compares T2. If T2
matches, the last pulse of the revolution will be BDC and will be followed by the reference

pulse (Figure 3.13b).

If none of the time intervals match the camshaft’'s period, the last pulse in the revolution will
be TDC (Figure 3.13c).

After determining the camshafts position the ECU can start the correct injection and ignition

timings for each of the cylinders.

3.1.3 Throttle Position Sensor

The Throttle Position Sensor (TPS) is attached to the throttle valve (Figure 3.14) and relays
the current throttle pedal position to the ECU.

10



Figure 3.14 — TPS sensor and valve in FSTO3.

The TPS sensor is composed by a potentiometer connected to the valve’s axis. When the
driver accelerates, the valve is opened and the potentiometer’s wiper arm moves along the
resistor changing the output voltage of the sensor (Figure 3.15). The throttle position is

determined by measuring the voltage difference between the wiper arm and ground.

Vce

|
i
; TPS output
|
|
|
|

e

4,

(7 i
/'/.\/“/‘ VWA HT&

Throttle Position Sensor
Figure 3.15 — TPS sensor’s internal view[2].

The TPS sensor output voltage varies linearly, between Ground and V¢, with the throttle

pedal’s position (Figure 3.16).

TPS sensor

0 10 20 30 40 50 60 70 80 90 100
PS (%)

Figure 3.16 — TPS output.
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Before converting the TPS voltage to a digital value, there is a low-pass filter to remove any
noise that could prevent the Analog-to-Digital Converter (ADC) from making an accurate
reading (Figure 3.17).

2

TPS in W TPS out
Resl
22K
—Cl1 =_—C2
Cap Cap
1nF 1uF GND

Figure 3.17 — TPS sensor conditioning circuit.

The throttle pedal’s position is then transformed into a percentage representing how much

throttle is being applied.

3.1.4 Manifold Absolute Pressure

The Manifold Absolute Pressure (MAP) sensor (Figure 3.18) is responsible for measuring the
air pressure inside the intake manifold and providing the ECU with the load currently being
applied on the engine. With the increase of the engine’s load, the volume of air entering the
engine through the intake manifold causes a rise of air pressure that is registered by the MAP

sensor.

Figure 3.18 — MAP sensor.

Inside the MAP sensor is a small silicon chip (Figure 3.19) placed between a vacuum

chamber and a line leading to the intake manifold.

12



Silicon Chip

Vacuum Chamber

Intake Manifold Pressure

Figure 3.19 — internal views of the sensor [3]

As the pressure increases inside the manifold, the silicon chip flexes (Figure 3.20), acting like

a strain gauge and changing its resistance.

Silicon Chip Chamb
amber

~~ N ~
4 4

Higher Pressure Lower Pressure

Figure 3.20 - chip flexing under pressure [3].

Inserting the chip in a Wheatstone bridge creates a voltage difference proportional to the

strain applied on the silicon chip (figure 3.21) [4].

strain gauge strain gauge
(stressed) (stressed)
=u -

1 : N\ :

= D

N

strain gauge strain gauge
(stressed) (stressed)

Figure 3.21 — Wheatstone bridge [4].

Before engine start, the MAP sensor registers the Barometric Atmosphere Pressure (BAP) to

provide a reference point for calculating engine load.

Figure 3.22 shows the sensor’s voltage output for different altitudes.

13
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Figure 3.22 - MAP sensor voltage output for different altitudes [11].

Engine load is determined by comparing the MAP sensor’s value before engine start and the
values obtained during engine operation. The value registered for the atmospheric pressure is
the same that is registered during Wide Open Throttle (WOT) periods, in other works, 100%
engine load. Knowing this, and the fact the output voltage is 0 when the intake manifold is in
perfect vacuum, it is possible to calculate the engine’s load (Equation 3).
MAP x 100 .
load = —— (Equation 3)
BAP

The MAP sensor’s voltage output undergoes the same conditioning as the TPS sensor and is

filtered by a low-pass filter prior to conversion.

3.1.5 Engine Coolant Temperature

Knowing the Engine Coolant Temperature (ECT) is a good way for the ECU to assess the
engine’s overall temperature. Elevated engine temperatures can lead to premature damage

to the engine’s internal components.

The ECT sensor is located near the engine where the coolant exits the engine to cool down in
the radiator and is composed by a Negative Temperature Coefficient (NTC) thermistor (Figure
3.23) immersed in the coolant. Due to the Negative temperature coefficient, the resistor’s

value will decrease with the increase of the coolant’s temperature (Figure 3.24).

14



Thermistor

Figure 3.23 — sensor internal view [5].

ECT sensor

20 30 40 50 60 70 80 90 100 110 120
Temperature (°C)

Figure 3.24 — ECT sensor’s voltage output.

The drop in the sensor’s resistance is conditioned by the ECU’s conditioning circuit (Figure
3.25) before being converted to a temperature value by the dsPIC.

R10 VDD
Resl
IK
ECT in RS ECT out
Resl
22K
—Cs T ==c4
Cap Cap
1nF LuF GND

Figure 3.25 — ECT sensor’s conditioning circuit.

Engine temperature readings are used by the ECU to make small corrections to the amount
of fuel injected and ignition advance resulting in faster engine warm-up during cold starts and

helping to lower engine temperature when needed [6].

15



3.1.6 Intake Air Temperature

The Intake Air Temperature (IAT) sensor (Figure 3.26) is identical to the one used for ECT
but instead of being immersed in coolant, the sensor is exposed to the outside air. The IAT
sensor is located inside the air intake manifold (figure 3.27) measuring the temperature of the

air being channelled into the cylinders.

Figure 3.27 — Air intake manifold.

The voltage output is also identical to the output of the ECT sensor but is used in a smaller

range of temperature values (Figure 3.28).

IAT sensor

-5 [ 5 10 15 20 25 30 35 40 45
Temperature (°C)

Figure 3.28 — IAT sensor output.

The temperature of the air entering the engine is used to make small adjustments to the fuel

injection and ignition advance to provide a more efficient combustion [6].
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3.2 Electronic Control Unit

Once the ECU has collected all of the information from the sensors in the engine, it has to

determine when and how much fuel to inject in the combustion chambers.

Ideally the ECU tries to achieve the optimum air to fuel ratio of 14.7:1(stoichiometric ratio) but
the changing operating conditions require small changes to the ratio. At lighter loads the ECU
can use leaner air to fuel mixtures (higher air to fuel ratio) to save fuel and user richer air to
fuel mixtures (lower air to fuel ratio) to help reduce engine temperature or warm up the
engine. An air to fuel ratio of 12.6:1 (rich) provides maximum power while a ratio of 15.4:1
provides the best fuel economy. Figure 3.12 shows the power and fuel consumption curves

versus the air to fuel ratio [7].

Stoichiometric

(Ideal)
Rich Lean T
|
Maximum [
power ;
Air-fuel ratio=12.6:1
Lambda (\) =0.86 _—Power
\ [
\ i
\ | |
N\ !
b |
N Best fuel
Fuel -~ N ~ economy /|
consumption S — 7 |
Air-fuel ratio=15.4:1 ‘
Lambda (A\) =1.05 |
] | ! _

Air-fuel ratio=14.7:1
Lambda (\) =1

Figure 3.29 — Power and fuel consumption curves versus air to fuel ratio [7].

The stoichiometric ratio is a compromise between rich and lean mixtures with very little
sacrifice of power or fuel economy and helps reduce emission of pollutant gases in the

combustion process.

The quantity of fuel injected and ignition advance applied for the current engine speed and

load is based on a series of tables, or maps, that are fully user configurable.

The ECU can be divided into 2 separate parts: the processing unit and the signal input and

output.

The processing unit is the circuit that contains the dsPIC and all sub-circuits necessary for it's
operation (Figure 3.30) and the circuit for signal input (sensors) and output (actuators)
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contains all driving circuits for the injector and ignition coils as well as the sensor conditioning

circuits (Figure 3.31).

The full circuit schematic can be found in appendix B.

Figure 3.31 — Driving and conditioning circuits.

During operation the ECU first starts by reading all the sensors values and determining the

engine’s speed. With the current engine speed and load, the ECU indexes the Base Fuel and

the Base Ignition Maps (Figure 3.32).
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Figure 3.32 — map example

The Base Fuel Map determines how long the injectors stay open during a camshaft

revolution. The values stored in this map are in the form of percentages. Figure 3.33 shows
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how the variation of the Base Fuel Map’s value affects the amount of fuel being injected into
the combustion chamber.

T
Engine speed —

v sinin i inia pEpiaipipialy
Camshaft e BIC  REF Toe
Position Sensor J—I H_ﬂ |—|_
Injector @ 100% J I_

Injector @ 50% J I

Injector @ 25%
Figure 3.33 — injector signal for 100%, 50% and 25%

1

The Base Ignition Map sets how many degrees of ignition advance (before TDC) must the

ignition have so that the spark occurs in the desired point of ignition.

Figure 3.34 shows the injection and ignition signals for one of the cylinders of the engine.

Ts
i —
Engine speed
Camshaft T WO REF -
Position Sensor _]—| |—|

Injection signal _] |

Ignition signal | L
Figure 3.34 — injection and ignition signals.

Since the ECU is time sensitive, all operations regarding ADC conversions, engine speed,
camshaft position and the generation of all output signals are made using interruptions.

Interruptions allow the ECU to perform other functions without the need of polling the inputs.

When an Engine Speed Sensor’s pulse reaches the ECU an interrupt is generated and the

time passed from the last pulse is stored so that the engine’s speed can be updated.

During camshaft related interruptions the ECU sets the output pulses for the appropriate
injectors and ignition coils. These pulses are generated using the dsPIC’s internal hardware
and only require the start and the end of the pulse to be set. The injectors and ignition coils
are fired according to the engine’s firing sequence: 1-2-4-3 [11]. This means the first cylinder
ignites first, followed by the second, the forth and finally the third cylinder.

Figure 3.35 shows the detailed operation of the camshaft’s interruption.
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Figure 3.35 — Camshaft Position interrupt diagram.

Between interruptions the ECU uses the new sensor data to update the current injection and

ignition advance timings. These are calculated using the ECU’s maps values but due to the

fact that the values contained in the maps do not include all possible values for engine speed

and load, a bilinear interpolation must be used.

A bilinear interpolation is an extension of the linear interpolation to functions with 2 variables.

For example, determining the value of a given point P (shown as a green dot in Figure 3.36).

Since P is inside the range of values of the map, we can define 4 known points near P (4 red

dots in Figure 3.36)
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Figure 3.36 — bilinear interpolation.

By using linear interpolation along one of the axis, in this case the x, we obtain R1 and R2

(blue dots in Figure 3.36) by using equations 4 and 5 respectively.

f(R]) = f(Qn) + f(Qzl (Equation 4)

f(R2) = f(Q12)+ f(sz (Equation 3)

Having determined R1 and R2, we can interpolate along the remaining axis to obtain the

maps value on P.

-Y Y -Y, .
fP )~ Y % F(RL)+ % =~ f(R2) (Equation 6)

2 1 2 4

After the injection and ignition advance timings are determined, they will be used on the next

camshaft interruption.

Figure 3.37 details the main ECU operations.
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Figure 3.37 — flowchart main.

3.3 Actuators

After performing all the calculations the ECU must command the injectors and the ignition
coils in order to inject and ignite the fuel inside the combustion chamber of each cylinder.
Precise injection and ignition timing can provide the engine a greater power output and
smooth operation while an incorrect timing setup can result in a significant loss of power and

efficiency and subsequently cause severe damage to the engine.

3.3.1 Injectors

The delivery of fuel to the engine is made by a set of injectors (one per cylinder). The

injectors (Figure 3.38) are small electronically controlled nozzles located in the air intake,
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upstream of each combustion chamber (Figure 3.39) that spray fuel into the chamber several

times per second.

Figure 3.38 — Injector.

Figure 3.39 - injector location [7].

The injectors are comprised of an electric coil (Figure 3.40) that opens the valve allowing the

flow of fuel into the combustion chamber.

—
FUEL RAIL

O-RING
FILTER

#2)—_ELECTRICAL
CONNECTOR

ELECTRIC
COIL

INTAKE
MANIFOLD

PINTLE CAP

Figure 3.40 — Internal view of the injector [8].

The high pressure of the fuel inside the fuel lines along with the small valve opening atomize
the fuel (Figure 3.41) mixing it with the air inside the chamber providing a more efficient fuel
combustion [7].
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Figure 3.41 — injector spray.

The injectors are controlled using the injector signals created by the ECU (Figure 3.42).

Injection signal J

Engine speed
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Camshaft
Position Sensor

il
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1

BCC  REF

ToC

[

|

Figure 3.42 — injector control signal

This signal is sent to the injection driver that controls the opening and closing of the injector.

Figure 3.43 shows the schematic diagram of the injectors driving circuit.
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100uF

Figure 3.43 — Schematic of the injector drivers.

INJ4- <:|INJ4-

Dz4
D Zener

The LM1949 integrated circuit drives the IGBT transistor while monitoring the current going

through the injector’s solenoid. If the current reaches 4 A or takes more than 2 ms to do so,

the driver reduces the current to less than half. This preserves the injectors since the current

needed to maintain the injector open is significantly less than the current needed to open it

(Figure 3.44).
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Figure 3.44 — Injector current [14].

The diode Dz4 helps the quick discharge of the solenoid when the injector is closed.

3.3.2 Ignition coils

After the fuel has been injected into the combustion chamber, the ECU must ignite the fuel
efficiently. The optimum point of ignition occurs when the combustion chamber is at its
maximum compression point (approximately 10° after TDC) [9]. The point of ignition can vary

slightly from the optimum combustion point to help reduce the engine’s temperature.

Since the spark cannot be instantly created, the ignition coils (Figure 3.45) store an
electromagnetic charge that is later discharged in the form of a spark at the tip of the
sparkplug. The time taken for the spark to occur from the moment current starts passing
through the coil is called dwell [10].

Figure 3.45 — ignition coils

Dwell time (Figure 3.46) depends of the ignition coils used and, in this case, the dwell is equal
to 3 milliseconds [11]. Increasing the dwell (over-dwell) will not provide additional energy to

the combustion and overheats the coil shortening its life span.
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Figure 3.46 — Dwell [10].

The ignition is controlled using a signal created by the ECU for each cylinder (figure 3.47) that

is sent to the corresponding ignition driver. Figure 3.48 shows the ignition driver's circuit
schematic.
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Figure 3.47 — Ignition signal.
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Figure 3.48 — Ignition driver circuit.

The ISLV3040P3 is an ignition driver IGBT that is able to monitor and limit the current passing

through the ignition coil without the use of additional external components.
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3.4 Controller Area Network Bus

The Controller Area Network Bus (CAN-Bus) is a broadcast protocol bus mainly used in the
automotive industry. Being a broadcast bus, all nodes connected to the bus receive the
messages sent through it. It is up to the nodes to decide whether to keep or discard the

message received.

There are 4 different types of CAN messages: Data frame, remote frame, error frame or an

overload frame.

The most common message used, and the one used by the ECU, is the data frame. The data
frame can be split into 4 major fields: Arbitration field, data field, Cyclic Redundancy Check
(CRC) field and the acknowledge slot (Figure 3.49) [12].

Abitration e
Field
Cortml End of
Field Data Field CRC Field Frare
| rwenstr [| ] | 1
* CRC A *ACK
Start of RTR. Delimiter  Delimiter
Frame

Figure 3.49 — Dataframe message [12].

The arbitration field determines the priority of the message and its used by the nodes as a
way to decide which messages to keep. The Arbitration field is 11 or 29 bits long depending

on whether the message uses standard or extended CAN identifiers.
Highest priority is given to the lowest message identifier.
The data field contains the message itself. It can take up to 8 bytes of data.

The CRC field is part of an error detection mechanism used by the CAN-Bus protocol. It

contains a 15 bit long checksum used to verify the integrity of the message.

Finally, the acknowledgement (ACK) slot is a short interval were the listening nodes send
confirmation of the correct arrival of the message. Since all nodes in the bus receive the
message, it is impossible to use this slot to make sure that the intended receiving node has
received the message sent. Other methods must be used to ensure the arrival of the
message to the correct node.

During operation, the ECU uses 3 different message identifiers (Table 3.1).
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Table 3.1 - CAN message identifiers.

Identifier Function
1 Base Fuel Map
value
2 Base Ignition Value
Acknowledge

Of these identifiers, only 2 are accepted by the ECU in incoming messages. These identifiers
correspond to the messages carrying Base Fuel Map or Base Ignition Map values.

The third identifier is used by the ECU as an ACK message signalling the correct arrival of the

message.

Figure 3.50 shows how the messages are processed by the ECU. Note that the message

discarding is done by specific hardware inside the dsPIC and therefore is not represented.

Received CAN
message

J 1 <fels;ge> 2 ‘L

Update BFMap Update BIMap
in RAM in RAM

Update BFMap Update BIMap
in EEPROM in EEPROM

Send ACK
message
Clear interrupt
flag

Figure 3.50 — CAN routine.
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Upon the reception of the message, the corresponding value is updated in the dsPIC’s RAM

and EEPROM versions of the maps.
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4. Map editor software

Adjustments to the fuel and ignition maps of the ECU are made using a specifically built
windows application. This application communicates with the ECU via a USB to CAN

converter.

Within the application users can modify the ECU maps in real-time just by changing the
values of the maps presented on the application’s user interface. Figure 4.1 shows the
application’s user interface.

r‘ ECU MAP creator E] {m]
Base Fuel Map [v] [CPreview Map ] [_Load MAP file ] [_Save MAP File | [ Increment Selected (+) ) ( Deciement Selected () ) [ Help J[_quit ]
500 RPM 1000 RPM 1500 RPM 2000 RPM 2500 RPM 3000 RPM 3500 RPM 4000 RPM 4500 RPM 50C
> o10% 100 100 56 50 50 50 50 50 50 50
20% 100 58 57 51 51 50 50 50 50 50
30% 56 57 57 51 51 50 50 50 50 50
40% 56 57 57 51 51 50 50 50 50 50

50% 56 57 57 51 51 50 50 50 50 50
60% 56 57 57 51 51 50 50 50 50 50
70% 50 51 51 51 51 50 50 50 50 50

80% 50 51 51 51 51 50 50 50 50 50
a0% 50 50 50 50 50 50 50 50 50 50 No devios deteoted
100% 50 50 50 50 50 50 50 50 50 50 CAN Status Get Version
[<] =il [ Update All Values |
DATA UPDATED ON THE ECU | Reset Maps |

Figure 4.1 — User interface.

All values changed in the user interface are automatically updated in the ECU (if connected)
as soon as the user is finished editing them. The application also allows the user to increment
or decrement a series of selected values by using the appropriate buttons and save or load

the ECU maps with the option of updating the complete maps to the ECU on loading a file.

The currently selected map can also be previewed in graphic form. The user can preview the
map as a Surface, contour, XY graphs. Figure 4.2 shows some of the available

representations.

Base Fuel Map
Base Fuel Map . Base Fuel Map

Ijection (%)

Injection (%)

Engine Load (%)

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Engine speed (RPM x 100)

XY

Surface + contour

Figure 4.2 — Preview charts.

The changes to the maps are sent to the ECU via CAN-Bus and to ensure the correct

transmission of the new map values a small protocol had to be implemented.
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All messages sent between the PC and the ECU follow the configuration shown in Figure 4.3.

Figure 4.3 - Message configuration.

SID is the message identifier referred in the previous chapter and, in this case, determines
the map that must be updated.

The length field contains the number of bytes of data being transmitted in the message. In

this application the length is always 3 bytes of data.

Bytes 1 to 8 carry the information being sent. In this case, the 3 bytes sent correspond to the

row, column and value respectively. In the ACK message the all data received is sent back.

Along with the use of an ACK message the application also implements a communication
timeout and checks the CAN buffer status for unsent messages that might result in a
communication failure. Upon a failing to send a message, the application provides the user
with a list of possible causes for the failure.

Figure 4.4 details the communication process.

i =n° of changed
values

A Y
uffer full

N
I
Send CAN
message

Transfer Error Error
Timeout Buffer full

I ! :

Figure 4.4 — C# flowchart
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To enable the communication between the PC and the ECU a USB to CAN-Bus conversion
circuit (Figure 4.5) must be used. The converter uses a PIC18f4550 to convey the messages
to and from the CAN-bus.

Figure 4.5 — USB-CAN board
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5. Results

All results obtained during the course of the ECU’s build were done in a laboratory using

voltage sources and function generators to simulate all of the necessary sensors.

The injection and ignition control signals were captured using a BitScope PC Oscilloscope
(Figure 5.1) and the BitScope DSO software.

Figure 5.1 — Bitscope.

Figure 5.2 shows the layout used during testing.

Function
generator

Bitscope
Figure 5.2 — layout

The injection pulses of all 4 injectors for an engine speed of 3000 RPM is shown in Figure

5.3. Note the pattern of the injection sequence (1-2-4-3).

AR AR AR R AR AAafE

Figure 5.3 — injection pulses
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From Figure 5.3 is also noticeable that every 3 pulses from the camshaft one of them is

discarded. This pulse is the camshaft reference pulse.

Figure 5.4 shows the ignition pulses for all cylinders with the same engine speed.

Uity iy oy

. J b 1 7 [ |

| |

Figure 5.4 — ignition pulses

All Base Fuel and Base Ignition map values used for these simulations are fictional and

require prior calibration on a dynamometer.
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6. Conclusions

The work presented, the ECU is capable of creating all the necessary signals to operate the
engine according to the fuel and ignition maps stored in its memory. It also enables the user
to change both maps while the engine is running. This is useful when tuning the engine on a
dynamometer and empowers the user to change the ECU’s settings according to its

preferences.
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7. Future work

Future work on the ECU can focused on improving its overall performance.

The ECU’s performance can be improved by adding additional maps to make small
corrections in the fuel injection and ignition advance based on throttle variations, engine

temperature and intake air temperature.
These maps can help the engine run more smoothly and respond better.

The ECU has to be configured while the car is placed on a dynamometer. This will set the

correct values in the ECU’s maps allowing the engine to run smoothly and correctly.
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Appendix A. Electronic Control Unit program

A1. Main

#include <p30f6012A.h>
#include "timers.h"
#include "Out_compare.h"
#include "adc.h"

#include "interrupts.h"
#include "Input_Capture.h"
#include "Maps.h"
#include "can1.h"

#define true 1
#define false 0

#define clock 16000000
#define TimerMax OxFFFF
#define RPM_increment 500
#define Load_increment 10

#define IGNpulse 0x0465
counts
#define alpha 0x0004

unsigned int INJsig=1;
unsigned int IGNsig=2;
coil

unsigned int T=0;
capture 1 variable 1
unsigned int T2=0;
variable 2
unsigned int T3=0;
variable 3

unsigned int T4=0;
variable 1
unsigned int T5=0;
variable 2
unsigned int T6=0;
variable 3

int go=0;

int Tcam=0;

from engine RPM
int CAMstate=0;

int timing[3]={0,0,0};
pulses
int timing_count=0;

int TPS=0;

Throttle position

int ECT=0;

Coolant temperature

/I duration of the ignition pulse in timer
/I small delay
/I counter to select injector
/I counter to select ignition
/[ Input
/I Input capture 1

/I Input capture 1

/I Input capture 2
/I Input capture 2
/I Input capture 2
// timing end flag
/I Cam rotation period calculated
/I identifies Cam pulse as TDC, BDC or REF
/[ array to store the time between cam
/[ timing pulse counter;
/I ADC conversion result -

/I ADC conversion result -
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int TP=0; /I ADC conversion result -

Temperature

int MAP=0; /Il ADC conversion result -
Manifold pressure

int IAT=0; /I ADC conversion result -
Air temperature

int IGNdelay; [/l ignition pulse delay

int INJpulse=0; /I duration of the injector pulse in

timer counts

int config=0;
int BAP=0;

/ICAN variables
unsigned int bufferRX_CAN1[4] = {0, 0, 0, 0};
unsigned int sid,lenght,data[4];

void __ attribute__ ((interrupt, no_auto_psv)) _IC1Interrupt(void){

T=T2;
T2=IC2BUF; /I save timer count

if(T2>T)
T3=T2-T;

if(T>T2)
T3=(TimerMax-T)+T2;

IFSObits.IC11F=0; /I clear interrupt flag
return;

}

/lInput Capture 2 interruption code
void __ attribute__ ((interrupt, no_auto_psv)) _IC2Interrupt(void){

unsigned int ONpulse;
unsigned int OFFpulse;

unsigned int ON_Ignpulse;
unsigned int OFF_Ignpulse;

if(timing_count!=3 && go!=true){
T4=T5;
T6=IC2BUF; /I save timer count

if(T5>T4)
T6=T5-T4;

if(T4>T5)
T6=(TimerMax-T4)+T5;

timing[timing_count]=T6;

if (timing[1] == Tcam){
CAMstate = 3;
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INJsig=1; /Iset next injector
go = true;
}else {
if(timing[2] == Tcam){
CAMstate = 2;
INJsig=1; /Iset next injector
go = true;
}else {
if(timing[1]!=0 || timing[2] != 0){
CAMstate = 1;
INJsig=2; /Iset next injector
go = true;
telsef

}

go=false;

}

if (timing_count < 3){
timing_count++;
telsef

/I determine start and stop time for ignition pulse
ON_Ignpulse=TMR2 + alpha + IGNdelay;
OFF_lIgnpulse=TMR2 + alpha + IGNdelay + IGNpulse;

if (ON_Ignpulse>0xFFFF)
ON_Ignpulse=ONpulse-OxFFFF;

if (OFF_Ignpulse>0xFFFF)
OFF_lgnpulse=OFFpulse-OxFFFF;

/I determine start and stop time for injection pulse
ONpulse=TMR2 + alpha;
OFFpulse=TMR2 + alpha + 0x01F2;//INJpulse;

if (ONpulse>0xFFFF)
ONpulse=ONpulse-OxFFFF;
if (OFFpulse>0xFFFF)
OFFpulse=OFFpulse-OxFFFF;
switch(CAMstate
case 1:
switch (INJsig){
case 1:
/linjector 1
IECObits.OC1IE=1; /lenable OCA1
interrupt
OC1R=ONpulse; /Iset
impulse start
OC1RS=0OFFpulse; Iset
impulse stop
/lignition 4
IEC2bits.OCB8IE=1; /lenable OC8
interrupt
OCB8R=0ON_lIgnpulse; /[set impulse start
OCB8RS=0FF_Ignpulse; /[set impulse stop
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injector

interrupt
impulse start

impulse stop

interrupt

injector

interrupt
impulse start

impulse stop

interrupt

injector

interrupt
impulse start

impulse stop

interrupt

case 4:

CAMstate = 2;
break;

case 2:

switch (INJsig){
case 2:

case 3:

INJsig=2;

break;

/linjector 4
IEC1bits.OC4IE=1;
OC4R=0ONpulse;
OC4RS=0FFpulse;

/lignition 1
IEC2bits.OC5IE=1;

OC5R=0N_Ignpulse;
OC5RS=0FF_Ignpulse;

INJsig=3;

break;

/linjector 2
IECObits.OC2IE=1;

OC2R=0ONpulse;
OC2RS=0FFpulse;

/lignition 3
IEC2bits.OC7IE=1;

OC7R=0ON_lIgnpulse;
OC7RS=0FF_Ignpulse;

INJsig=4;

break;

/linjector 3
IEC1bits.OC3IE=1;
OC3R=0ONpulse;
OC3RS=0FFpulse;

/lignition 2
IEC2bits.OC6IE=1;
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/Iset next

/lenable OC4
/Iset

/Iset

/lenable OC5

/Iset impulse start
/[set impulse stop

/Iset next

/lenable OC2
/Iset

/Iset

/lenable OC7

/Iset impulse start
/[set impulse stop

/Iset next

/lenable OC3
/Iset

/Iset

/lenable OC6



OC6R=0ON_lIgnpulse; /[set impulse start

OCG6RS=0FF_Ignpulse; /Iset impulse stop
INJsig=1; /Iset next
injector
break;
}
CAMstate = 3;
break;
case 3:
CAMstate=1;
break;
}
IFSObits.IC2IF=0; /I clear interrupt flag
return;
}

void __ attribute__ ((interrupt, auto_psv)) _C1Interrupt(void){

if (C1INTFbits.RXOIF) {
sid = C1RX0SIDbits.SID;
lenght = C1RX0DLCDbits.DLC;
data[0] = C1RX0B1 & 0x00ff;
data[1] = (C1RX0B1 & 0xff00)>>8;
data[2] = C1RX0B2 & 0x00ff;
data[3] = (C1RX0B2 & 0xff00)>>8;
C1RXO0CONDbits.RXFUL = 0;
C1INTFbits.RXOIF = 0;

}

if (C1INTFbits.RX1IF) {
sid = C1RX1SIDbits.SID;
lenght = C1RX1DLCbits.DLC;
data[0] = C1RX0B1 & 0x00ff;
data[1] = (C1RX0B1 & 0xff00)>>8;
data[2] = C1RX0B2 & 0x00ff;
data[3] = (C1RX0B2 & 0xff00)>>8;
C1RX1CONbits.RXFUL = 0;
C1INTFbits.RX1IF = 0;

}
switch (sid){

case 1:
_RD11=1;
BFMap[ data[1] ] [ data[0] ] = data[2];
break;

case 2:
BIMap[ data[1] ] [ data[0] ] = data[2];
break;

default:
break;
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config_envia_can1( 3, 3, data[0] , data[1] , data[2] , data[3] );

IFS1bits.C11F=0;

/I ADC interruption

void __ attribute__ ((interrupt, no_auto_psv)) _ADClInterrupt (void){

int TPSO;
int ECTO;
int MAPO;
int IATO;

TPSO0 = ADCBUFO;
position

ECTO = ADCBUF1;
Temperature

MAPOQO = ADCBUF3;
pressure

IATO = ADCBUF4;
Temperature

/[TPS processing
TPS = (TPSO0 * 100)/5;

/IMAP processing
if (config == 0}
BAP = MAPO;
config01;
telsef

}
I

MAP = (MAPO * 100)/BAP;

IFSObits.ADIF = 0;

return;

1 ===INJECTOR INTERRUPTIONS===

/I Output Compare 1 interruption - INJECTOR 1

/I save ADC conversion - Throttle
/I save ADC conversion - Coolant
/I save ADC conversion - Manifold

/I save ADC conversion - Air

void __ attribute__ ((interrupt, no_auto_psv)) _OC1Interrupt (void){

IECObits.OC1IE=0;
OC1CONDbits.OCM=0;
OC1CONbits.OCM=4;
another pulse
IFSObits.OC1IF = 0;
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/ single pulse mode - must be reset in order to generate



return;

}

/I Output Compare 2 interruption - INJECTOR 2
void __ attribute__ ((interrupt, no_auto_psv)) _OC2Interrupt (void){

IECObits.OC2IE=0;

OC2CONbits.OCM=0;

OC2CONbits.OCM=4; /Il single pulse mode - must be reset in order
to generate another pulse

IFSO0bits.OC2IF = 0;

return;

}

/I Output Compare 3 interruption - INJECTOR 3
void __ attribute__ ((interrupt, no_auto_psv)) _OC3Interrupt (void){

IEC1bits.OC3IE=0;

OC3CONDbits.OCM=0;

OC3CONbits.OCM=4; /I single pulse mode - must be reset in order
to generate another pulse

IFS1bits.OC3IF = 0;

return;

}

/I Output Compare 4 interruption - INJECTOR 4
void __ attribute__ ((interrupt, no_auto_psv)) _OC4Interrupt (void){

IEC1bits.OC41E=0;

OC4CONbits.OCM=0;

OC4CONbits.OCM=4; /I single pulse mode - must be reset in order
to generate another pulse

IFS1bits.OC4IF = 0;

return;

}
I ===IGNITION INTERRUPTIONS===

/I Output Compare 5 interruption - IGNITION COIL 1
void __ attribute__ ((interrupt, no_auto_psv)) _OC5Interrupt (void){

IEC2bits.OC5IE=0;

OC5CONDbits.OCM=0;

OC5CONDbits.OCM=4; /I single pulse mode - must be reset in order
to generate another pulse

IFS2bits.OC5IF = 0;

return;

}

/I Output Compare 6 interruption - IGNITION COIL 2
void __ attribute__ ((interrupt, no_auto_psv)) _OC6Interrupt (void){
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IEC2bits.OC6IE=0;

OC6CONDbits.OCM=0;

OC6CONDbits.OCM=4; /I single pulse mode - must be reset in order
to generate another pulse

IFS2bits.OC6IF = 0;

return;

}

/I Output Compare 7 interruption - IGNITION COIL 3
void __ attribute__ ((interrupt, no_auto_psv)) _OC7Interrupt (void){

IEC2bits.OC7IE=0;

OC7CONbits.OCM=0;

OC7CONbits.OCM=4; /I single pulse mode - must be reset in order
to generate another pulse

IFS2bits.OC7IF = 0;

return;

}

/I Output Compare 8 interruption - IGNITION COIL 4
void __ attribute__ ((interrupt, no_auto_psv)) _OC8Interrupt (void){

IEC2bits.OCB8IE=0;

OCB8CONDbits.OCM=0;

OCB8CONDbits.OCM=4; /I single pulse mode - must be reset in order
to generate another pulse

IFS2bits.OC8IF = 0;

return;

int main( void X
int RPM=0;
int Load=0;
int index1=0;
int index2=0;
unsigned int 911,912,921,922;
unsigned int r1,r2;
unsigned int x1,x2,y1,y2;

unsigned int Ttotal = O; /I time between events on a cilinder

unsigned int BF = 0; [/l value retrived from the
Base Fuel Map

unsigned int Bl = 0; [/l value retrived from the
Base Ignition Map

int aux=0;

TRISDbits. TRISD8
TRISDbits. TRISD9
TRISDbits. TRISD11
TRISDbits. TRISDO

[/l port RD8 as input

/[ port RD9 as input

/l port RD11 as output
/[ port RDO as output

QOO A
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I

TRISDbits. TRISD1 =0; /I port RD1 as output
TRISDbits. TRISD2 =0; /I port RD2 as output
TRISDbits. TRISD3 =0; /I port RD3 as output
TRISDbits. TRISD4 = 0; /I port RD4 as output
TRISDbits. TRISD5 = 0; /I port RD5 as output
TRISDbits. TRISD6 = 0; /I port RD6 as output
TRISDbits. TRISD7 =0; /I port RD7 as output
init_timer1( );

init_can1( );

INTinit( );

initTIMER2 ( );

InputCapINIT ();

OUTCOMPInit( );

ADCinit ();

config_recebe_can1();
config_envia_can1(1,3,2,1,58,0);

_RD11=1;

while(1){

RPM = (5*clock)/(32*T3); /lcalculo da velocidade do motor

Tcam =6 * T3;
Ttotal = (2 * Tcam) - ( alpha);

Load = MAP;
Load = 20;

/| * ok ok ke ke *k * *k ** * e ** MAP calculations

index1=0;

index2=0;

while ( (500 + index1 * 500 ) <= RPM )
index1++;

while (( 10 + index2 * 10 ) <= Load )
index2++;

q11 =BFMap [index2 - 1 ][index1 - 1];
g21 = BFMap [ index2 - 1 ][ index1 J;
q12 = BFMap [ index2 ] [ index1 - 1 ];
g22 = BFMap [ index2 ] [ index1 ];

x1 = RPM_increment + (( index1 - 1) * RPM_increment);
x2 = RPM_increment + (index1 * RPM_increment);
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y1 = Load_increment + (( index2 - 1) * Load_increment);
y2 = Load_increment + (index2 * Load_increment);

r=(((x2-RPM)*q11)/RPM_increment )+ (((RPM-x1)*qg21)/
RPM_increment );

r2=(((x2-RPM)*q12)/RPM_increment )+ (((RPM-x1)*q22)/
RPM_increment );

BF =(((y2-Load)*r1)/Load_increment)+ (((Load-y1)*r2)/Load_increment

if(BF 1=100)

INJpulse = (Ttotal * BF) / 100;
else

INJpulse = Ttotal;

q11 =BlIMap [ index2 - 1 ][ index1 -11;
g21 = BlMap [ index2 - 1 ][ index1 ];
q12 = BIMap [ index2 ] [ index1 - 1 ];
g22 = BIMap [ index2 ] [ index1 J;

r=(((x2-RPM)*q11)/RPM_increment )+ (((RPM-x1)*qg21)/
RPM_increment );

r2=(((x2-RPM)*q12)/RPM_increment )+ (((RPM-x1)*q22)/
RPM_increment );

Bl=(((y2-Load)*r1)/Load_increment)+ (((Load-y1)*r2)/Load_increment);

IGNdelay = 0x01B2;

}

return O;
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A2. CAN

#include <p30f6012a.h>

#define FCY 16000000 /l (16 MHz *
PLL4)/4
#define BITRATE 1000000 11
Mbps
#define NTQ 8

/ Number of Tq cycles which will make the CAN Bit Timing
#define BRP_VAL ((FCY/(2*NTQ*BITRATE))-1)  // Formulae used for

C1CFG1bits.BRP

void init_can1( void )

/[Config relacionado com o Baud Rate
C1CTRLbits.REQOP = 4; //Configuration mode
while(C1CTRLbits. OPMODE != 4);

C1CTRLbits.CANCKS = 0;

C1CFG1bits.SJW = 0; //ISync =1 Tq
C1CFG1bits.BRP = BRP_VAL;

C1CFG2bits.SEG2PH = 2; //Phase2 = 3Tq
C1CFG2bits.SEG2PHTS = 1;

C1CFG2bits.SAM = 0; /M=sample 3 vezes
C1CFG2bits.SEG1PH = 1; /[Phase1 = 2Tq
C1CFG2bits.PRSEG = 1; /IProg Seg = 2Tq

void config_recebe_can1( void )}

/IPrepara para receber
C1RX0CON = C1RX1CON = 0x0000; /I Receive Buffer1 and 0 Status

/IMascara Fica preparado para standard e extended
C1RXMOSID = C1RXM1SID = 0x1FFC;
C1RXMOEIDH = C1RXM1EIDH = OxOFFF;
C1RXMOEIDL = C1RXM1EIDL = 0xFCO0O;

/IFiltros

/[FO Velocidade da roda frente esquerda????????7??
C1RXFO0SIDbits.SID = 1; /ISID 11 bits
C1RXFOSIDbits.EXIDE = 0; /[Enable do filtro para standard
/IFO

/IF1 Velocidade da roda frente direita??????????
C1RXF1SIDbits.SID = 2; /ISID 11 bits
C1RXF1SIDbits.EXIDE = 0; /[Enable do filtro para standard

void config_envia_can1( int sid, char nbytes, int byte_byte1, int byte_byte2, int byte_byte3, int
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byte byte4 ¥
/IPrepara para envio
C1TXO0CON = 0x0003; // High priority

C1TX0SIDbits.SID5_0 = sid & 0x03f;
C1TX0SIDbits.SID10_6 = ( sid >> 6 ) & Ox1f;

C1TXO0SIDbits.SRR = 0; //Normal message, nao E request a remote
transmission

C1TX0SIDbits. TXIDE = 0; /ITransmite em standard

C1TXOEID = 0x0000; / EID = 0000000000000000000
(0x00000)

C1TXODLCDbits. TXRTR = 0; //Normal message, nao E request a
remote transmission

C1TXODLCbits. TXRB1 = 0; /lIZero como definicao do protocolo
CAN

C1TXODLCbits. TXRBO = 0; /lIZero como definicao do protocolo
CAN

C1TXODLCbits.DLC = nbytes; /INumero de bytes que vao ser enviados

C1TX0B1 = (byte_byte2<<8)| byte_byte1 ; //Buffer carregado
C1TX0B2 = (byte_byte4<<8)| byte_byte3 ; //Buffer carregado

//Normal Operation Mode
C1CTRLbits.REQOP = 0;
while(C1CTRLbits. OPMODE != 0);//Espera que passe a hormal operation mode

//Inicio da transmissao
C1TXOCONDbits.TXREQ = 1;

/IPrepara para envio
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A3. Interrupts

#include <p30f6012A.h>
void INTinit(void){

// interrupA, 0 do timer 1
IFSObits. T1IF = 0;

1 IECObits.T1IE = 1;
IPCObits.T1IP = 5;

/linterrupcao CAN1
C1INTF = 0;
IFS1bits.C1IF = 0;
IPC6bits.C1IP = 3;
C1INTEDbits.RXO0IE = 1;
C1INTEbits.RX1IE = 1;
C1INTEbits.ERRIE = 1;
IEC1bits.C1IE = 1;

return;

/lexternal interrupt initialization

/I Clear timer 1 flag
/l Enable Timer 1 Interrupt
/I Set Timer 1 interrupt priority

/IReset all The CAN Interrupts
/IReset the Interrupt Flag status register
[lInterrup priority CAN1
/[Enable do receive Buffer 0 interrupt
/[Enable do receive Buffer 1 interrupt
/[Enable do interrupt de erro
/[Enable the CAN1 Interruption
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A4. Input Capture

#include <p30f6012A.h>

void InputCapINIT (void){

IC1CON=0; /I Disables Input Capture 1
IC1CON=0x82; /I Configures Input Capture 1
IPCObits.IC11P=4; /I Set interrupt priority to 4
IFSObits.IC11F=0; /I Clear interrupt flag

IC2CON=0; /I Disables Input Capture 2
IC2CON=0x82; /I Configures Input Capture 2
IPC1bits.IC2IP=4; /I Set interrupt priority to 4
IFSObits.IC2IF=0; /I Clear interrupt flag
IECObits.IC1IE=1; /I Enables the interruption for IC1
IECObits.IC2IE=1; /I Enables the interruption for IC2
return;
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A5. Output Compare

#include <p30f6012A.h>

/I Output compare 1 initialization
void OUTCOMPInit(void){

/I Output compare 1 configuration

OC1CON=0x0;
OC1CONDbits.OCSIDL=0;
OC1CONDbits.OCTSEL=0;
OC1CONDbits.OCM=4;

IFS0bits.OC11F=0;
IECObits.OC1IE=1;
IPCObits.OC11P=4;

/I Output compare 2 intialization
OC2CON=0x0;
OC2CONDbits.OCSIDL=0;
OC2CONDbits.OCTSEL=0;
OC2CONbits.OCM=3;

IFSO0bits.OC2IF=0;
IECObits.OC2IE=1;
IPC1bits.OC2IP=3;

/I Output compare 3 intialization
OC3CON=0x0;
OC3CONDbits.OCSIDL=0;
OC3CONDbits.OCTSEL=0;
OC3CONDbits.OCM=3;

IFS1bits.OC3IF=0;
IEC1bits.OC3IE=1;
IPC4bits.OC3IP=3;

/I Output compare 4 intialization
OC4CON=0x0;
OC4CONDbits.OCSIDL=0;
OC4CONDbits.OCTSEL=0;
OC4CONbits.OCM=3;

IFS1bits.OC41F=0;
IEC1bits.OC4IE=1;
IPC5bits.OC41P=3;

/I Output compare 5 intialization
OC5CON=0x0;
OC5CONDbits.OCSIDL=0;
OC5CONDbits.OCTSEL=0;
OC5CONDbits.OCM=3;

IFS2bits.OC5IF=0;
IEC2bits.OC5IE=1;
IPC8bits.OC5IP=3;

/I Output compare 6 intialization
OCB6CON=0x0;

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/I set interrupt priority

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/I set interrupt priority

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/Il set interrupt priority

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/I set interrupt priority

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/I set interrupt priority

/I clear register
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OC6CONDbits.OCSIDL=0;
OC6CONDbits.OCTSEL=0;
OC6CONDbits.OCM=3;

IFS2bits.OC6IF=0;
IEC2bits.OC6IE=1;
IPC8bits.OC6IP=3;

/I Output compare 7 intialization
OC7CON=0x0;
OC7CONDbits.OCSIDL=0;
OC7CONDbits.OCTSEL=0;
OC7CONbits.OCM=3;

IFS2bits.OC7IF=0;
IEC2bits.OC7IE=1;
IPC8bits.OC71P=3;

/I Output compare 8 intialization
OCB8CON=0x0;
OCB8CONDbits.OCSIDL=0;
OC8CONDbits.OCTSEL=0;
OCB8CONDbits.OCM=3;

IFS2bits.OC8IF=0;
IEC2bits.OC8IE=1;
IPC8bits.OC8IP=3;

/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/I set interrupt priority

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag
/[ enable interruption
/I set interrupt priority

/I clear register
/I continue working in idle mode
/I select timer 2
/I single pulse mode

/I clear interrupt flag

/[ enable interruption
/I set interrupt priority

58



A6. Analog-to-Digital converter

#include <p30f6012A.h>

/IADC initialization
void ADCinit (void){

IECODbits.ADIE = 1;
IPC2bits.ADIP = 3;
IFSObits.ADIF = 0;

ADCON1bits. ADON = 0;

ADCON1=0x0;
ADCON2=0x0;
ADCON3=0x0;

ADCON1bits.SSRC = 7;
ADCON1bits.FORM = 0;
ADCON1bits.ASAM = 1;

ADCONZ2bits. CSCNA= 1;
ADCONZ2bits.VCFG = 0;
ADCONZ2bits.SMPI = 4;

ADCONB3bits. SAMC = 31;
ADCONB3bits. ADRC = 0;
ADCONZ3bits.ADCS = 1;

ADCSSL = 0x013C;
ADPCFG = 0xFECS3;
/IADCSSL = 0;
/IADCHS = 0x0002;
ADCON1bits.ADON = 1;

return;

/I Enable ADC interrupts
/I Interrupt priority level 3
/ clear ADC flag

/I Stop ADC

/I clear ADCONT1 register

/I clear ADCONZ2 register

/I clear ADCON@3 register

/I Conversion trigger source - auto-convert
/I return integrer

/I auto-start next conversion

/[ scan inputs

/I select AVDD e AVSS
/I interrupt after 5 conversions

/I Conversion clock derived from system clock
/[ X TCy

/] select pins to be scanned
/I configure ADC bits

/I configure ADC channels

/I Start ADC conversions
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Appendix B. Drivers circuit schematic
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