
Formula Student Championship: an Integrated Data
Processing Module Adapted for Pit-Stop Scenarios

João Pedro Passos Figueiras

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Nuno Filipe Valentim Roma
Prof. Ricardo Jorge Fernandes Chaves

Examination Committee
Chairperson: Prof. João Emı́lio Segurado Pavão Martins

Supervisor: Prof. Nuno Filipe Valentim Roma
Member of the Committee: Prof. Renato Jorge Caleira Nunes

May 2014

Acknowledgments

Quero agradecer a todas as pessoas que de alguma forma contribuiram para que o sucesso

deste trabalho.

À equipa da Formula Student do Instituto Superior Técnico, com especial atenção ao Pedro

Oliveira, Bruno Santos, e Daniel Pinho, pelas orientações e contribuições dadas ao longo do

desenvolvimento do trabalho.

Ao Diogo Carvalho, por me ter disponibilizado o seu trabalho juntamente com os trabalhos

do Paulo Mendes e do David Copeto, e pela disponibilidade de auxiliar na minha integração no

projecto e esclarecer dúvidas.

Aos professores Nuno Roma e Ricardo Chaves pela oportunidade de trabalhar nesta tese,

orientação dada ao longo do trabalho, e grau de exigência tido que muito contribuiu para o meu

desenvolvimento.

À minha familia e amigos, que ao longo do curso sempre me apoiaram e motivaram, e claro,

à Joana, a minha maior fonte de motivação.

Abstract

This document describes the proposed solution for a software framework and integrated user

interface to be deployed in the existing telemetry system installed in the vehicle prototype of

Instituto Superior Técnico (IST) team that competes in the Formula Student Championship. The

solution has two deployment devices, one located in the racing vehicle (referred to as mobile

station), and the other located in the pit stop (referred to as pit station). The ultimate goal is to

enable the data sent from the mobile station to be stored and displayed to users in the pit station

either in real-time or at a later time. Data is acquired from several sensors installed in the car and

interconnected by a Controller Area Network (CAN) bus network. This project consists essentially

on the evolution of a previous developed software framework to better cater the end user needs.

The work comprises important improvements on several components, such as the communication

protocol used between the two stations, the database used to store all the information gathered,

the required processing over the gathered data, and the adaptation of a graphical user interface

to better fit the user profiles and requisites.

Keywords

Formula Student Championship, Graphical User Interface, Database Management System,

Communication Protocol, Management/Processing of sensor data

iii

Resumo

Este documento descreve a solução proposta para uma aplicação de software e correspon-

dente interface do utilizador, com vista a sua integração no sistema de telemetria instalado no

veiculo da equipa do IST que compete no campeonato Formula Student. A solução é constituı́da

por dois módulos autónomos, um localizado no veiculo (referido como módulo móvel), e outro

localizado na linha de meta ou boxes (referido como módulo fixo). O principal objectivo é permitir

que os dados enviados da módulo móvel sejam guardados e exibidos aos utilizadores no módulo

fixo, seja em tempo real ou numa altura posterior. Os dados são adquiridos de vários sensores

instalados no carro e interligados por uma rede baseada no barramento CAN. Este projecto con-

siste essencialmente numa evolução de uma aplicação de software desenvolvida anteriormente,

para melhor atender ás necessidades dos utilizadores. O trabalho inclui melhoramentos em di-

versos componentes, como o protocolo de comunicação usado entre os dois módulos, a base de

dados usada para guardar a informação recebida, o processamento requerido sobre os dados

recebidos, e a adaptação da interface gráfica do utilizador para melhor se ajustar aos perfis de

utilizadores e seus requisitos.

Palavras Chave

Campeonato Formula Student, Interface Gráfica do Utilizador, Sistema de Gestão da Base de

Dados, Protocolo de Comunicação, Gestão/Processamento de dados de sensores

v

Contents

1 Introduction 1

1.1 Scope . 2

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Main contributions . 6

1.4.1 Data Management . 6

1.4.2 Data Processing . 7

1.4.3 Time Line . 7

1.4.4 Data Presentation . 7

1.5 Dissertation outline . 8

2 Related Work and Supporting Technologies 9

2.1 Summary . 10

2.2 Industrial/Commercial And Academic Solutions . 10

2.2.1 McLaren . 10

2.2.2 MoTeC . 12

2.2.2.A MoTec i2 Standard and MoTeC i2 Pro 12

2.2.2.B MoTec Telemetry Monitor . 13

2.2.3 Academic Solution . 13

2.3 Supporting Technologies . 15

2.3.1 Qt Framework . 16

2.3.2 Qwt Library . 16

2.3.3 PostgreSQL . 16

2.3.4 muParser . 17

2.4 Existing Hardware Infrastructure . 17

2.4.1 Mobile Station . 18

2.4.2 Pit Station . 20

2.4.3 Communication Infrastructure . 21

vii

Contents

3 System Architecture 22

3.1 Overview . 23

3.2 Communication . 24

3.3 Mobile Station Architecture . 26

3.4 Pit Station Architecture . 28

4 Pit-Station Implementation 33

4.1 Summary . 34

4.2 Cross-Platform Application Framework . 35

4.3 Framework Communication Implementation . 36

4.4 Database Management and Implementation . 39

4.5 XML Data Manager . 42

4.5.1 Sensors Management . 43

4.5.2 User Preferences . 45

4.5.3 Car Tuning Parameters . 45

4.5.4 Graphical Elements . 46

4.5.5 Sensor Post-Processing . 46

4.6 Sensor Data Processor . 47

4.6.1 Single Sensor Manipulation . 48

4.6.2 Combinational Sensor Manipulation . 48

4.7 Operation Manager . 51

4.8 Graphical User Interface . 52

4.8.1 Graphical Layout . 52

5 Results 65

5.1 Summary . 66

5.2 Testing Environment . 66

5.3 Session Management . 66

5.4 Experimental Tests And Results . 67

5.4.1 Database Insertion Speed . 67

5.4.2 Network Communication Speed . 69

5.4.3 Mathematical Engine Performance . 70

5.4.4 Multiple Operating System Support . 71

5.4.5 Sensor Data Analysis . 71

5.4.6 End-Users Feedback . 72

6 Conclusions 75

6.1 Conclusions . 76

viii

Contents

6.2 Future work . 78

A Appendix A 83

A.1 Communication Protocol . 85

B Appendix B 89

B.1 Lagrange Polynomial . 91

C Appendix C 95

C.1 Installation Guide . 97

ix

Contents

x

List of Figures

1.1 The fifth prototype produced by the Formula Student Team (FST) team (FST05e) [5]. 2

2.1 Screenshot of McLaren Atlas software application. 11

2.2 SQL Race data distribution. 11

2.3 MoTeC i2 graphical user interface. 13

2.4 MoTeC telemetry monitor screen layout. 14

2.5 Previous FST academic solution: Starting wizard screen [7]. 15

2.6 Previous FST academic solution: Main window with the real-time project graphical

layout [7]. 15

2.7 Example of plots and gauges provided by Qwt library [20]. 17

2.8 VIA EPIA-P700 Board equipping the car mobile station [7]. 18

2.9 CAN bus installed in the vehicle [6]. 19

2.10 CAN to Universal Serial Bus (USB) transceiver installed in the vehicle [7]. 19

2.11 Supporting Global Positioning System (GPS) device installed in the mobile station

[8]. 20

2.12 Wi-Fi USB device installed on the mobile station [7]. 21

3.1 Overall system architecture. 23

3.2 Architecture of the mobile station side of the framework. 27

3.3 Architecture of the pit station side of the framework. 28

4.1 Allocation of the pit station modules to the corresponding threads. 36

4.2 Receiving and processing new information in the previous framework version. . . . 38

4.3 Network processing in the new framework version. 39

4.4 Example of database processing interactions between the Graphical User Interface

(GUI) thread and the Operation Manager thread. 42

4.5 Sequence steps when setting a new user preference. 44

4.6 XML file with a GPS sensor configuration. 44

4.7 User preferences configuration file. 45

4.8 Car tuning parameters configuration file. 46

xi

List of Figures

4.9 Interpolation of the data used to compute the values of a sensor C, composed of a

mathematical manipulation of sensors A and B. 51

4.10 Main screen of the application, with no project initiated. 53

4.11 Previous FST academic solution: Main window with the real-time project graphical

layout [7]. 54

4.12 Global window of the previous version of the framework, with docked widgets. . . . 55

4.13 Offline data analysis GUI from the previous version of the framework. 55

4.14 Graphical interface of two functionalities provided by the menu and tool bar of the

application screen. 58

4.15 Central zone of the interface, divided by its functionalities. 59

4.16 Tab, graph and track map context menus, allowing the user to manage the informa-

tion displayed. 60

5.1 Process of initiating each type of project, alongside the common process of man-

aging graphical elements within the screen layout. 67

5.2 Max writing rate of PostgreSQL, when there are only write operations, and when

there are write and read operations simultaneously. 68

5.3 Subset of the write only performance of PostgreSQL. 68

5.4 Transmission time required to send 16MB to the pit station, by using several net-

work packet sizes. 69

5.5 muParser speed performance, evaluated for several sampling rates. 70

5.6 Framework look and feel, for analysis performed under Mac and Linux. 71

5.7 Offline session with scatter plot. This type of plot is an X-Y graph, in which each

axis is filled with values from one sensor. This graph is used to evaluate the varia-

tion of one sensor in relation to another. 72

5.8 Offline working session with an histogram. This graph displays a set of bars, which

represent the frequency of a range of values in a given session. 72

5.9 Offline working session with a gps track map. The interface for this widget is an

adaptation of the interface used in the previous version of the framework. The

user can chose any sensor, and browse through the acquired map coordinates to

analyse the sensor values for any of them. 73

A.1 Process of transmitting a packet. 86

A.2 Management of the priority queues in the packet transmission procedure. 87

A.3 Management of received packets. 88

B.1 Lagrange exact N+1 points function and correspondent N degree interpolation poly-

nomial [21]. 91

xii

List of Figures

B.2 Process of creating an interpolation polynomial of degree two [22]. 93

C.1 Installation steps for configuring PostgreSQL. 97

C.2 Qt installation step where the user should tick the box corresponding to Source

Components. 98

xiii

List of Figures

xiv

List of Tables

2.1 Mobile station specification [7]. 18

2.2 Wi-Fi USB adapter specifications [7]. 21

3.1 Previous packet structure used in the communication between the two ends [7]. . . 24

3.2 New packet structure. 26

A.1 Mapping between transmission priority level and session identifiers [7]. 85

xv

List of Tables

xvi

List of Acronyms

ALMS American Le Mans Series

API Application Programming Interface

CAN Controller Area Network

CSV Comma-Separated Values

DBMS Database Management System

DLL Dynamic-link Library

ECU Electronic Control Unit

FIA Federation Internationale de l’Automobile

FST Formula Student Team

GPS Global Positioning System

GUI Graphical User Interface

GCC GNU Compiler Collection

IDE Integrated Development Environment

IST Instituto Superior Técnico

JIT Just-In-Time

JPEG Joint Photographic Experts Group

KML Keyhole Markup Language

MSVC Microsoft Visual C++

MTU Maximum Transmission Unit

NASCAR National Association for Stock Car Auto Racing

PDF Portable Document Format

xvii

List of Acronyms

POSIX Portable Operating System Interface

RPM Revolutions Per Minute

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

XML eXtensible Markup Language

xviii

1
Introduction

Contents
1.1 Scope . 2
1.2 Motivation . 3
1.3 Objectives . 4
1.4 Main contributions . 6
1.5 Dissertation outline . 8

1

1. Introduction

1.1 Scope

The origins of the student motor-sport competition dates back to 1981 when the Formula SAE

programme started in the United states. In order for a team to participate, it had to develop a

formula-style race car, which would be evaluated according to its potential as a production item

[14]. Later, in 1998, the Formula Student Championship [4] was born in the UK, under the jurisdic-

tion of the Institution of Mechanical Engineers. The goal of this competition is to give the chance

for engineering students to demonstrate their technical, engineering design, and manufacturing

skills, while developing other capabilities such as team working, time management, among others.

Each team is challenged to conceive, design, build, cost, present and compete with a prototype

of a single-seat racing car in a series of static and dynamic events. These challenges are used for

students to demonstrate their understanding and test the performance of the vehicle, while being

judged by experienced industry specialists. Just like any other competition, there are factors that

influences the overall result of a team. Among these are the evaluation of the built prototype in

terms of its cost (which must be low), ease to be maintained, reliability, and performance in terms

of acceleration, braking and handling qualities.

In 2001, a project (denominated by Formula Student Team (FST)) [5] was initiated by a group

of students from Instituto Superior Técnico (IST) with the aim of joining the Formula Student

Competition. They started to compete a year later with their first produced prototype. Since its

foundation, the team has already built five prototype vehicles. The first three have traditional

combustion engines. The fourth started to follow the trends for electric vehicles, therefore having

an electrical engine, and the fifth continued to follow this trends, thus also being equipped with

an electrical engine. The team is composed of several students from diverse IST courses such

as Mechanical, Electronics, Aerospace and Informatics Engineering, and is supported by several

professors. The latest prototype produced by the team, called FST05e, is depicted in Figure 1.1.

Figure 1.1: The fifth prototype produced by the FST team (FST05e) [5].

2

1.2 Motivation

To provide students with the means for an early and real-time problem detection on the vehicle,

and consequent ability to make improvements or adjustments during testing sessions, a series of

projects have taken place. These projects mainly consisted in creating the hardware infrastructure

and the software application that would make this type of analysis possible. As such, the existent

work counts with a fully featured telemetry system installed in the vehicle, which is composed

by an embedded-computer connected to a Controller Area Network (CAN) bus and a Global

Positioning System (GPS) receiver. This system collects data from several sensors such as:

suspension displacement, engine Revolutions Per Minute (RPM), tire pressure, among others.

This set of sensors is interconnected to the embedded-computer by the CAN, used to collect the

data. This data is subsequently used for analysis by a software application in the pits, which

receives it by means of a wireless network connection. The work presented in this thesis, is a

follow-up to a series of previous works related to the software that enables the analysis of sensor

data, gathered by the telemetry system installed in the vehicle and sent over the wireless network

connection to the pits [6–8].

1.2 Motivation

It is very important to have well defined system requirements when developing any system.

The degree of satisfaction of the users with a system, is directly related to the correct catering of

their needs. The previous framework was the result of a series of independent works focused on

some particular characteristic to be added to the system, and not an attempt to build a single tool

for racing analysis tailored to the users. Therefore, it lacked a formal definition of an integrated set

of system requirements which was very important to enable a useful data analysis from the users.

As a consequence, it was necessary to gather these requirements and determine the user needs

and conditions to meet. The result of this analysis was the integration of some previous existing

modules improved and adapted for new needs, with new ones that were defined to meet new

functionalities not yet introduced in the system. To cope with the collected requirements, several

enhancements had to be introduced. In the communication module to make it independent of

the adopted operating system and to change the structure of the transmitted network messages,

in order to give more flexibility in changing their content. A new configuration module had to

be developed to allow the users to manage the sensors used in their analysis. It was agreed

that this module would let the users define sensors that were installed in the car and respective

signal processing formulas, but also define a type of sensor that would represent a mathematical

manipulation over the sensors installed in the car. It was also decided to introduce improvements

on the Database Management System (DBMS), namely by changing it, in order to increase the

speed performance for storing the acquired data, in a multi-transactional environment. Besides

this, it was also necessary to define the interface between the system and the users, to promote

3

1. Introduction

a familiar working environment where they can work at their best. Therefore, a redefinition of the

Graphical User Interface (GUI) was also required, in order to provide the users with a comfortable

interface for them to perform any data analysis.

Hence, the presented work constitutes the definition of an integrated framework, which de-

fines a new distributed system that caters the user needs for a racing analysis tool. The new

framework integrates some of the existing functionalities, with the new created modules in a sin-

gle tool, together with a dedicated GUI. As a consequence, the solution implies deployment in

both the mobile and pit station. The former is responsible for acquiring sensor data and sending it

to the pit station, so the necessary modifications lied in the adaptation of the communication pro-

tocol, to be used when transmitting messages. The latest is responsible for receiving the sensor

data, process it and store it. Therefore the modifications in the pit station are more emphasized,

with adaptations in the communication module, the change of the DBMS, definition of the new

information management module, and the redefinition of the GUI.

In the whole, this work represents a significant added-value to the work performed by the IST

FST team, in the sense that it will enable the team to detect failures in the car and perform the

necessary adjustments, in an easier, faster and more flexible way. It also represents an added-

value to the data gathered by the car sensors, since the integrated management, manipulation

and processing of data, enables the users to have their analysis environment configured to match

their preferences. As an example, the users may have ten sensors installed in the car, but at a

specific moment they are only interested in seeing information from five in an analysis session.

The system enables the users to set up the five needed sensors in the application, while the

information from the other sensors is disregarded and not displayed. Another example is for

instance, manipulate data coming from the electric current sensor and from the battery voltage

sensor, particularly by multiplying one for the other, and get the value corresponding to the power

requested by the motor to the battery at a particular instant.

1.3 Objectives

As referred before, this project constitutes an evolution of a previous version of the framework

already developed for the IST FST team, which can only be used for a limited and static set of

analysis. Therefore, the project main goal is to overcome the existent limitations and make the

software more useful for the users. To accomplish this, it is mainly focused on the development

of a new and more sophisticated framework to be used in the pit station. This new version offers

a more convenient and user-friendlier graphical user interface, new data processing and manag-

ing tools, and an improved reimplementation of the existent software modules. Hence, the end

result of this thesis is a software framework that fully integrates the data acquisition and commu-

nication modules of the FST05e prototype vehicle with the user interface, while allowing a more

4

1.3 Objectives

sophisticated manipulation of the gathered data. These improvements will provide the team with

an easier way of detecting early signs of problems, providing the ability to warn the driver or to

prepare the next adjustments to be made during the next pit stop. The main goals for this project

can be enumerated as follows:

1. In order to allow the usage of the system in multiple operating systems, the implementation

of the communication module will be adapted to be operating system independent.

2. Change the DBMS, in order to achieve better performances in terms of speed in a multi-

transactional environment.

3. Development of a flexible sensor management system, providing the user with a friendly

interface for adding or removing sensors from the desired analysis layout.

4. Integration of a mathematical engine, allowing users to introduce their own signal processing

routines.

5. Development of new types of graphs and gauges, to allow the analysis of data in several

kinds of views suited for specific purposes.

6. Integrate all components into a unique software framework, with a dedicated graphical user

interface.

Regarding the two last goals, the requirements defined by the end users for the graphical user

interface are:

• A single and unified graphical interface. In the previous version of this framework, there were

two separated interfaces for two types of projects, one for the real-time data acquisition, and

one for the offline data analysis. The end users required for the new version to have one

single interface, applicable to both types of projects.

• User profile adaptable graphical layout. The layout of the graphical application should be

adaptable to various types of user profiles since there are users concerned with the anaylisis

of different areas of the vehicle (e.g: breaks, engine, suspension, etc.). This should be

accomplished by having manageable tabs, in which several graphs can be introduced to

display data from any sensor.

• Various types of graphs. The previous version lacks of graph veriety, giving only the possi-

bility to have a time graph with information relating to single sensors, GPS track map, and a

painting simulation of the team’s vehicle. The end users required to have new set of graphs:

time graphs, histograms and scatter plots (X-Y graphs where both axis are configurable by

the user), and GPS track map;

• Various types of gauges. The previous version has three types of gauges, namely dials,

bars, and steering wheels. The users required to extend this set of gauges to accomodate

a greater variety. These include numeric lists, numeric gauges, and status lights;

5

1. Introduction

• Graphical timeline: in the previous version there is no possible way to select a specific time

span to be shown in the graph, neither is it possible to browse through time or distance in a

graph. In the new version the end users required to have a graphical time/distance timeline

mechanism where they would be able to select the time/distance span to be shown in a

graph and browse through the graph data.

1.4 Main contributions

This section describes the main contributions of this work, as well as the most relevant char-

acteristics for the end users.

1.4.1 Data Management

In order to have a working environment in which only the needed information by a specific

analysis is taken into account, a flexible management context is required that allow the user to

select what information should be loaded and presented. In this case, this means the currently

relevant sensors for the users, together with the graphical elements in which their information is

displayed. Hence, it is very important for the project to provide a context in which the user can

select which information he wants to see. To accomplish this type of flexibility, dedicated graphical

tools are provided for the users. Since many users, with possibly different profiles will be using

the system, it is important to be able to load the information associated to each type of user when

needed. The considered method to account for this aspect is to store this type of information in

eXtensible Markup Language (XML) files:

• For the sensor information, when the user changes the list of sensors he is currently working

with, a dedicated XML file containing this information is updated with the new list chosen by

the user. This information, subsequently stored in a file, contains data such as the sensor

name, id, type, and the number of bytes that must be read from network messages when

receiving data for that particular sensor.

• For the information regarding the graphical elements used to display sensor data, another

dedicated XML is used. The user can have several elements placed on the GUI, being

responsible for deciding which ones are displayed. Unlike what is done for the information

referred in the point above, when the user changes the graphical elements the information

is not immediately stored. Instead, the user has to explicitly save the GUI state. For this

particular type of information, there are dedicated files for each session in which the user has

done some data processing. The data stored in these files contains information regarding

the type of graphical element to be displayed, as well as the sensor or sensors associated

with it.

6

1.4 Main contributions

1.4.2 Data Processing

It is very useful to be able to efficiently manipulate data from sensors. As an example, one may

need to see several data records received for some set of sensors, which have to be all associated

and displayed according to some mathematical equation. For this purpose, it is necessary to

obtain an equal set of points for all sensors, composed by the intersection of all timestamps

belonging to each sensor, and then interpolate the corresponding value for each timestamps. The

mathematical equation should be evaluated after all of the interpolated values are obtained, and

the result stored and displayed to the user.

To provide this functionality, the interface has a dedicated tool which allows to configure the

mathematical manipulations over the existing set of sensors. The information about each new

manipulation is then stored in the same XML file as the real sensors data, that are installed in

the car (as mentioned in the previous section). With this approach, each data manipulation can

be treated as a conventional sensor, but with the particularity that it is not installed in the vehicle,

since it is the result of a combination of more than one sensors installed in the vehicle.

Another situation in which this type of processing is required is for one specific kind of plot,

namely the X-Y graph, which associate a value of one sensor to a value of other sensor based on

timestamps. For this type of plot, the same process of obtaining the set of timestamps described

above is performed, as well as the interpolation of the obtained timestamps to get their corre-

sponding values. Unlike the process described above, the evaluation of a mathematical equation

is not needed in this case, as there are no such association between the sensors.

1.4.3 Time Line

Besides being useful for the users to see the overall information of a given analysis session, it

is more useful for them if they can zoom in and out the time range of a session being displayed

and browse through its overall time line. It is also helpful to select a specific point in time and

check for the associated sensor information. The users should be able to select specific points in

time by clicking on a graph and also select which information to be displayed based on shrinking

and expanding the time range. When the time range is inferior to the overall time of a session,

the user should be able to browse through its overall time. In this case the displayed information

corresponds to the time range adjusted for the fraction of the session associated with the browse

point selected.

1.4.4 Data Presentation

The management and processing of data is regarded as a very useful feature, but only if there

is a GUI that makes it possible for the users to visualise the information in the most suitable way.

For this purpose, some new graphical widgets were developed, each one being helpful for specific

7

1. Introduction

purposes. There are two types of widgets that should be provided to the users: the Graphs and

the Gauges. The Graphs provide the means for the user to visualize information in time (e.g to

compare data from two sensors, check the frequencies of samples for a specific sensor, etc).

The Gauges are similar to vehicle dash boards, and act as indicators for sensors which display

information for a specific point in time. Besides this, the user also needs to know what is the time

span of the information displayed in the widgets, as well as the data corresponding to a specific

point in time that he has selected. This type of information is also displayed in the GUI, in order

to assist the user to locate himself in time.

1.5 Dissertation outline

The content of this thesis is divided into six chapters, which are briefly described as:

• Chapter 2 - Related Work and Supporting Technologies: Starts by introducing both in-

dustrial and academic works, which are somehow related to this work, followed by describing

all the software and hardware components that are part of the overall solution.

• Chapter 3 - System Architecture: Gives an overview of the proposed solution architecture,

as well as a description of the structure of each deployment station present in the solution.

• Chapter 4 - System Implementation: Describes all software components that are part of

the overall solution.

• Chapter 5 - Results: Presents the testing and evaluation environment, the tests that were

performed and consequent results used to guarantee the accomplishment of the defined

objectives.

• Chapter 6 - Conclusions: Presents a small reflection of the work done and the obtained

results, as well as some ideas for future improvements on the new framework.

8

2
Related Work and Supporting

Technologies

Contents
2.1 Summary . 10
2.2 Industrial/Commercial And Academic Solutions 10
2.3 Supporting Technologies . 15
2.4 Existing Hardware Infrastructure . 17

9

2. Related Work and Supporting Technologies

2.1 Summary

Telemetry has become an imperative technology in today’s motorsports, acting as a compet-

itive factor for racing teams to perform remote measurement on vehicles, but also to transmit

instructions for drivers to change the way they are driving in order to achieve better performances.

These remote measurements are transmitted via a wireless data communication link. Given the

impact of this telemetry, some restrictions have been set for some competitions, such as Formula

1, to prohibit telemetry communication from pits to the cars [15].

This chapter starts by presenting the commercial and academic state of the art software so-

lutions, which share the goal of providing the monitoring teams with the best service, in order

for them to analyse data coming from the vehicles according to their needs. Following this, it

introduces a set of technologies which support the implementation of these systems in some way.

2.2 Industrial/Commercial And Academic Solutions

Among the several existent commercial solutions for telemetry and data analysis, three are

considered as the most important, and correspond to the ones developed by McLaren [12], by

Cosworth [13], and by MoTeC [9]. This consideration comes from their usage in some of the

most widely known competitions. Specifically, McLaren software is used on Formula 1, Cosworth

software is used on MotoGP, and MoTeC software is used on Le Mans [9–11]. These three

applications gather the most influencing technological aspects in this type of telemetry systems.

Among these three solutions, two are presented here with more detail, as they have more

affinity with this project, namely the McLaren’s software (used in Formula 1), and the MoTeC’s

software (used in Le Mans and also by the IST FST team).

2.2.1 McLaren

As the standard Electronic Control Unit (ECU) supplier chosen by the Federation Internationale

de l’Automobile (FIA), McLaren plays a key role to all teams in Formula 1 today. Alongside the

ECUs, a software system called Atlas [11] was developed with the goal of enabling teams to

obtain, display, and analyse nearly real time data that is received from the car or to perform

posterior analysis on logged data. Atlas allows users to access and visualise data in a diverse

set of views, including Waveform, Circuit, Bar, Numeric, Scatter, Loadmap, Histogram, Summary,

FFT, Map, and InPlace. Data is received, displayed and analysed, and the user is able to select

the data to be presented from a browser, or drag from another display. Furthermore, data can

be easily navigated using a specialised scroll bar, which provides users with a graphical timeline

that allows them to select and see information of a specific time or distance in a specific lap.

This software also allows the users to create and manipulate their own functions, based on the

type of received data; to display the result in different views provided by the system; and to

10

2.2 Industrial/Commercial And Academic Solutions

automatically check the state of the car and engine. Session data can be exported and imported in

various formats, including Matlab. Additionally, by using a specialised Dynamic-link Library (DLL),

it is possible to write specific drivers to access other formats of data [11]. A screenshot of this

application is presented in Figure 2.1.

Figure 2.1: Screenshot of McLaren Atlas software application.

In order to store and manage the large quantity of data gathered at the track or by a track

simulation, Structured Query Language (SQL) Race, an Application Programming Interface (API)

for Microsoft SQL Server 2008 is also offered by McLaren. By using this, racing teams are pro-

vided with the means to keep data synchronized across multiple databases, allowing them to

have databases located in different locations, such as in the racing track and at their factory. An

example of a typical data distribution based on this system is depicted in Figure 2.2.

Figure 2.2: SQL Race data distribution.

11

2. Related Work and Supporting Technologies

2.2.2 MoTeC

MoTeC [9] is a top level motorsport technology systems manufacturer founded in 1988, ded-

icated to the design of efficient, reliable and versatile engine management and data acquisition

systems. As a global leader, MoTec has its systems present on the military, commercial and

motorsport championship industry, the latest counting with series such as 24 Heures Le Mans,

American Le Mans Series (ALMS), National Association for Stock Car Auto Racing (NASCAR),

FIA GT, Australian V8 Supercars, Dakar Rally and World Superbikes. Among its products, the

Data Analysis Tools are the ones most relevant to this project. These tools, are divided into

two subcategories, namely the Analysing Logged Data category and Managing Telemetry Data

category. The three most relevant software applications in these subcategories are the following:

• The MoTec i2 Standard and MoTec i2 Pro, belonging to the Analysing Logged Data sub-

category, are used to organise, interpret and manipulate large amounts of data in order to

identify trends, problems and improvements;

• The MoTeC Telemetry Monitor, belonging to the Managing Telemetry Data category, is used

to monitor data in real time and provide the means for decisions to be made quickly.

MoTeC’s technology systems are herein considered as the reference tools in this work, since

these are the tools that the team uses and feels most comfortable working in. This package of

tools offers the majority of the functionalities desired by the FST users. The following sections

discuss the three software applications in more detail.

2.2.2.A MoTec i2 Standard and MoTeC i2 Pro

The Motec i2 Standard and Motec i2 Pro are the two MoTeC’s data analysis tools herein con-

sidered. The first one is freely available to all customers, and offers the read of logged data facility

from a MoTec Data Logger or ECU. The second tool requires an optional Pro Analysis upgrade

or Feature License, and provides the additional functionalities of advanced mathematics, multi-

ple overlay laps, and unlimited components, workbooks, and worksheets. Examples of various

screen layouts from MoTeC graphical user interface can be seen in Figure 2.3. The highlights of

the i2 data analysis software includes [9–11]:

• An analysis component to accurately access and visualize data, including Graphs, Multiple

Overlay Support (only available on the i2 Pro version), Synchronised Video, Dual Cursor

Support (only available on the i2 Pro version) and Reports;

• A data component to manage the displaying of data to the user, including Cursor and Zoom

Linking, Data Gating (only available on the i2 Pro version), Graphical Overlay Alignment

(only available on the i2 Pro version);

• A math component for mathematical processing and equation management, data export

and parameter recording log sheets (only available on the i2 Pro version);

12

2.2 Industrial/Commercial And Academic Solutions

• A user-defined track sections component for the user to define his own sections on a circuit;

• A miscellaneous component, which include features like workbooks and worksheets man-

agement, global channels settings, video generation (only available on the i2 Pro version),

and drag racing template.

Figure 2.3: MoTeC i2 graphical user interface.

2.2.2.B MoTec Telemetry Monitor

The MoTeC Telemetry Monitor tool enables real time monitoring of the vehicle conditions. The

data received in the pits originated from the vehicle allows the engineers to monitor its condition

on the fly, enabling a faster problem detection and preparation of changes to improve the racing

performance. A key aspect of this tool is that it needs to be clear and highly intuitive, so problems

can be easily identified and decisions taken quickly. To accomplish this, the software accommo-

dates the received data in a grid of widgets, selected and placed in the screen by the user. Among

these widgets, there are dial gauges, bar graphs, virtual steering wheels, track maps and warn-

ings. Furthermore, there is the possibility to create a log file from the received data to be analysed

with i2 Pro software [9, 10]. A personalised screen layout from this software can be seen in figure

2.4.

2.2.3 Academic Solution

Similarly to the presented commercial solutions, the previous academic solution that was de-

veloped at IST also provides the means to acquire and analyse data on the vehicle, either in real

time or after a running session. This solution is a result of an on-going academic work performed

by several students in the context of their master thesis. However, it is mostly an aggregation of

various independent and not integrated software solutions, each one developed with a specific

goal in mind, to provide or demonstrate some particular functionalities of the system. The existing

solution has the capability to read data gathered in the mobile station, either coming from a wire-

less communication channel transmitting real time data, or from a data file containing previously

13

2. Related Work and Supporting Technologies

Figure 2.4: MoTeC telemetry monitor screen layout.

logged data. This tool also provides the means for a subsequent simple data manipulations, since

the data gathered by the several existing sensors is sent in different formats. Data received from

the mobile station (or uploaded from a file), is stored in a SQLite [3] database management sys-

tem after being received and interpreted. This data includes the sessions date and time, and the

whole set of collected values received or logged by the mobile station. The necessary transforma-

tions over the data are done regarding each specific type of sensor. However the set of possible

transformations is static and the user is not able to change it, which forces the set of sensors in

the car to be also static.

The existing application has two main parts: the Wizard, and the Main Window with its widgets.

The Wizard is what the user sees when the application is launched, and is responsible for inquiring

the user about the data needed to configure a session. The Main Window allows the user to

visualise data from various sensors in a set of different widgets and graphs, including: a car

widget, for quick observation of the state of the car; dial gauge widgets; bar gauge widget and

time graph widgets. The Wizard and Main Window screen layouts are depicted in Figures 2.5

and 2.6 respectively.

Additionally, there is still the possibility to analyse the data without running the application. To

accomplish this, the tool allows exporting the gathered data to a Portable Document Format (PDF)

file with the information of a given session. The user is able to select which sensors and laps

should be included in the file. Besides the PDF report, there is also the possibility to export the

acquired positioning data to a Keyhole Markup Language (KML) file with the purpose of integrating

this data into the Google Earth Application. This functionality allows the georeferencing of the

acquired data using satellite images [7, 8].

Given the absence of a coherent integration of the several functionalities and the weak usability

level that is offered by this tool, the racing team rarely uses this solution. However, it served as a

14

2.3 Supporting Technologies

Figure 2.5: Previous FST academic solution: Starting wizard screen [7].

Figure 2.6: Previous FST academic solution: Main window with the real-time project graphical
layout [7].

starting point for the development of this project. Important improvements needed to be introduced

in order to make sure the next generation of this software is more user friendly and with the set of

functionalities desired by the FST Team.

2.3 Supporting Technologies

This section provides a description of the technologies that allow for the implementation of the

system. Starting with Qt Framework [19], facilitating with the development of the graphical user

interface and operating system portability. Then, it introduces the Qwt Library [20], which also

helped in the development of the graphical user interface, particularly by providing GUI elements

useful for presenting the information from the sensors. Next, it introduces the PostgreSQL [1],

which was the DBMS used to store the data. And finally the last technology presented, the

15

2. Related Work and Supporting Technologies

muParser [27], is a library which was helpful in parsing and evaluating mathematical expressions.

2.3.1 Qt Framework

Qt [19] is an application framework that helps in the development of applications in C++. Par-

ticularly, it is mostly useful for creating platform independent applications, and it also compre-

hends a set of technologies offered to support the software development of intuitive, modern and

fluid GUIs. It supports the development through its dedicated Integrated Development Environ-

ment (IDE), Qt Creator, which is also platform independent. It was designed for providing the

necessary means for Qt developers to boost their productivity to create their applications faster.

Qt provided all the necessary features in the development of this project, and its relevance was

emphasized in all modules of the system. It enabled the development of develop a cross platform

communication protocol, cross platform DBMS operations, faster means of creating the neces-

sary XML files for storing information, and last but most important, a cross platform GUI. All of

these are described in chapter 4.

2.3.2 Qwt Library

Qwt Library [20] is a platform independent set of classes which helps in the development of

graphical elements for a GUI. It can be integrated with Qt, and incorporated for faster devel-

opments in Qt Creator. It is tailored for applications with some technical context, because the

elements it provides are specifically designed to present measurements associated to some sci-

entific background. Therefore, this library supported the creation of the several types of graphs

and gauges requested by the end users, as well as the time line. The most relevant components

for this project that are provided by Qwt are the Curve Plots, Scatter Plots, Histograms, Dials,

Compasses, Thermos and Sliders. An example with a curve plot and a thermo plot is shown in

figure 2.7. Their usage in the project is detailed in chapter 4.

2.3.3 PostgreSQL

PostgreSQL [1] is one of the most widely known open source DBMS in the world. It has

been developed and maintained for more than fifteen years, and it has earned a strong reputation

for reliability, data integrity, and correctness. It can be installed in almost all existing operating

systems, including the ones in which the aimed framework must run. It is among the set of DBMS

which can be used with Qt Framework, thanks to the existing SQL driver plugins that come along

with the Qt Sources.

In the proposed work, it is used to store all the relevant information that are sent from the

mobile to the pit station. This includes the data gathered from the sensors installed in the car, and

information associated to the maps created from the GPS data. Details about the integration of

the PostgreSQL DBMS with the application are described in more detail in chapter 4.

16

2.4 Existing Hardware Infrastructure

(a) Curve Plot (b) Thermo

Figure 2.7: Example of plots and gauges provided by Qwt library [20].

2.3.4 muParser

The muParser [27] is a static library written in C++ that parses and evaluates mathemati-

cal equations. It enables the parsing and evaluation of expressions with an arbitrary number of

variables. Besides the standard mathematical operators, namely addition, subtraction, division

and multiplication, it provides several other built in functions, such as: min, max, avg, abs, sqrt,

exp, log, log10, log2, sin, cos, and tan. This library transforms expressions into bytecode, pre-

calculating their constant parts. It was designed with the aim to be portable and so it can be

used in any operating system, working with the C++ compilers Microsoft Visual C++ (MSVC) and

GNU Compiler Collection (GCC). Hence, it can be used in all major operating systems, including

Windows, Linux and Mac Os. In the scope of the proposed project, it was used for the evaluation

of user mathematical expressions, and its usage is detailed in chapter 4.

2.4 Existing Hardware Infrastructure

Given the need to detect early signs of failures in the vehicle, make adjustments and improve

the vehicle performance, it was decided by the FST team to create a system that would enable

the transmission of information from the car to the pits for subsequent analysis. This system

consists on two platforms, namely the set of components installed in the vehicle, called Mobile

Station Platform, and a personal PC or laptop located in the pits, called Pit Station Platform. The

communication between both stations is ensured by a IEEE 802.11 WiFi transceiver which is

installed in the pits alongside the pit station platform. The two platforms the compose the system

are described in the following subsections.

17

2. Related Work and Supporting Technologies

2.4.1 Mobile Station

The mobile station platform comprehends the aggregation of five independent parts that sup-

port the mobile station side of the presented framework. These are a single board computer which

controls the operations in the car, a CAN bus used to acquire data from the sensors, a CAN to

Universal Serial Bus (USB) transceiver used to convert data from the CAN bus to USB, a GPS

device used to track the vehicle position, and a communication infrastructure, used to enable the

transmission of data between both stations. The single board computer has four USB interfaces,

which are used to connect the other platforms. The former runs a Knoppix 6.2 Linux operating

system that is installed in a USB device. The framework is run through the operating system,

acting as a bridge between all the other components and the framework. When needed, the USB

device referred above, is also used to store data for subsequent analysis, namely data from the

sensors. All of these devices were selected and integrated in the overall project in the context of

previous master theses.

The single board computer that supports all the operations on the mobile station is depicted

on Figure 2.8 and its technical specifications can be found on Table 2.1. More details are given

on [7].

Figure 2.8: VIA EPIA-P700 Board equipping the car mobile station [7].

Processor: VIA C7 x86 @1GHz
Board VIA EPIA-P700 compact board with 1GB of DDR2 RAM memory
Chipset VIA VX700 Unified Digital Media IGP
Graphics VIA Unichrome Pro II IGP
Storage Pen Drive USB 4GB
Interfaces 1xIDE

1xS-ATA
4xUSB
1xSerial RS232
1xVGA
1xGigabit Ethernet

Table 2.1: Mobile station specification [7].

The CAN bus installed in the vehicle and used to gather data from the several sensors is

18

2.4 Existing Hardware Infrastructure

depicted on Figure 2.9. This equipment is connected to the transceiver described below, to which

it sends the gathered information. It was developed in the context of a previous thesis [6], where

its specifications are described in detail. This equipment was specifically developed because the

single board computer installed in the car does not support the CAN interface. Therefore, the

CAN bus could not be directly connected to it.

Figure 2.9: CAN bus installed in the vehicle [6].

The CAN to USB transceiver installed in the car is depicted on Figure 2.10. It collects data

directly from the CAN bus and converts this data to the USB protocol, to be posteriorly read by the

single board computer. It was also developed in the context of a previous thesis, being described

in more detail in [7].

Figure 2.10: CAN to USB transceiver installed in the vehicle [7].

The GPS device that enables the acquisition of the vehicle’s position, alongside other informa-

tion such as time, is illustrated on Figure 2.11, and further detailed in [8].

The architecture of the mobile station side of the framework is described in Chapter 3, and

implementation details are presented in Chapter 4.

19

2. Related Work and Supporting Technologies

Figure 2.11: Supporting GPS device installed in the mobile station [8].

2.4.2 Pit Station

Contrary to the mobile station, the pit station does not represent any specific part of hardware,

although it must fulfil some minimum requirements to run the pit station side of the framework. In

most situations, this will be a computer belonging to some member of the IST FST team, which

means a recent PC or laptop. The minimum requirements that are necessary for the installation

and correct execution of the framework in the pit station are the following:

• Have the PostgreSQL [1] DBMS (version 9.3 or later) installed, in order to enable the storage

of the information gathered form the sensors.

• Have the Qt Framework [19] (version 5.2 or later) installed, to give cross-platform support.

• Have Qwt Library version [20] (version 6.1 or later) installed, to support platform independent

design of the graphical elements that display the received information, namely the data

gathered from the sensors or from user defined formulas, at runtime.

• Have the Matlab Compiler Runtime R2012a [25] installed. This enables the execution of the

compiled Matlab modules associated to the GPS data processing.

• The supporting operating system can be one of the following: Windows, Mac or Linux.

These three operating systems are supported by all the above mentioned software compo-

nents.

The installation guide of the pit station software, covering the necessary external components

for the correct operation of the framework can be found in Appendix C. The architecture of the pit

station side of the framework is described in Chapter 3, and its implementation details presented

on Chapter 4.

20

2.4 Existing Hardware Infrastructure

2.4.3 Communication Infrastructure

In order to support the communication between both stations, a USB Wi-Fi adapter and a

wireless router are used [7]. The USB adapter is connected to the single board computer installed

in the car. It enables the mobile station to transmit and receive messages through a private

network. Figure 2.12 illustrates this hardware and Table 2.2 states its main characteristics.

Figure 2.12: Wi-Fi USB device installed on the mobile station [7].

Indoor Range 75m at 1Mbps / 40m at 54Mbps
Outdoor Range 350m at 1Mbps / 60m at 54Mbps

Transmit Power Output 16dBm at 1Mbps / 12 dBm at 54Mbps
Max. Data Rate 54 Mbps

Receiver Sensivity -92dBm at 1Mbps / -65 dBm at 54Mbps

Table 2.2: Wi-Fi USB adapter specifications [7].

The wireless router acts as a manager of the wireless connection between the two stations.

The other alternative would be to have the mobile and pit stations work in ad-hoc mode. However,

this has bad support under Linux operating systems, so it was disregarded (see [7]). The router

is placed in the pits, next to the computer that acts as pit station. Its most relevant characteristics

can be found in [28].

21

3
System Architecture

Contents
3.1 Overview . 23
3.2 Communication . 24
3.3 Mobile Station Architecture . 26
3.4 Pit Station Architecture . 28

22

3.1 Overview

3.1 Overview

This chapter describes the proposed solution and the resulting architecture for the considered

framework. As it was already mentioned, it comprises two important units: a mobile station, where

data is acquired and transmitted, and a pit station, where the data sent from the mobile station is

stored and analysed. In this section an overview of the overall system architecture is presented,

composed by the aggregation of both stations. The two following sections discuss each of the

stations, detailing the architecture of its components. In this architecture, communication is per-

formed in both directions, both from the mobile station to the pit station and vice-versa. However,

the most important communication flow is from the mobile station to the pit station since data is

acquired by the former and stored in the latest, creating a client-server style architecture. Figure

3.1 illustrates a layered view of the overall system architecture for the proposed system, identi-

fying a boundary which represents the subset of modules that are affected by this project, and

additionally the bridge of communication between both stations. It also represents a deployment

view of the framework. This is because each of the represented components, are allocated to the

corresponding platform in which it is assigned in the figure.

Figure 3.1: Overall system architecture.

The Framework Communication Protocol module is the only one that is common to both sta-

tions. This is where all the communications between the two stations are implemented. In the

mobile station side, this is the only software module affected by this project. This module is fur-

ther discussed on the Communication section. The presented architecture and belonging modules

were devised with several objectives in mind. The main aims were to:

• Facilitate software maintenance, as the separation of the offered functionalities is done

across the several modules, facilitating the correction of faults, improve the performance,

or enhance other attributes.

23

3. System Architecture

• Provide a good debugging ability, as the several modules can be used to identify particular

faults related to different sources of activity. This can be, for example, a problem in the

operations on the DBMS, or in the communication protocol.

• Allow the possibility of software reusability, since the implemented modules offer particular

characteristics. These count with, data management, data processing, network communi-

cation, and display of data to the user. With this in mind, this functionalities are separated

into different modules to easily allow them to be integrate, and thus used, into other devel-

opments without much offering the need for further efforts.

• Make it extensible without much effort. This can be done either by extending an existing

module or by creating a new module to incorporate new functionalities.

3.2 Communication

While the car is running, data is gathered from sensors and sent from the mobile station to the

pit station. This section describes the communication protocol used for network transmissions of

this data between the two stations, with a brief explanation of what was already implemented in

the previous version, followed by the improvements introduced in the new version. The devised

solution is based on an improved version of the protocol developed for the previous version of the

framework [7], detailed in Appendix A.

The communication between the two stations is performed by using a Wi-Fi connection. This

is accomplished by having a Wi-Fi USB adaptor connected to the mobile station and by having a

wireless router next to the pit. The communication flows from the mobile station to the pit station

through the router [7]. Both stations send and receive packets. This means that while the team is

performing a test session, the vehicle will be sending messages to the pit station and vice-versa.

However, during testing sessions the mobile station will mainly act as client, while the pit station

will mainly act as server. This is justified by the fact that relevant information about sensor’s

measurements is only sent from the client (the mobile station), to the server (the pit station). The

structure of the network packets used in the previous software framework version to transmit data

between the two stations is depicted on Table 3.1.

16 bits 16 bits 16 bits Number of bytes indicated by the size 8 bits
Packet

Number Size ID timestamp and measurement Checksum

Table 3.1: Previous packet structure used in the communication between the two ends [7].

• The packet number field is used to assure the order of the packets and to detect lost ones.

It is incremented wherever each new packet is sent;

24

3.2 Communication

• The size header field indicates the length (in bytes) of the data field;

• The ID header field is used to identify the sensor from which the data were generated from.

This field has a fixed length, and it is also used for control messages, as described later;

• The data field is where the measurements read from the sensors are transported. This field

has a variable length, which is indicated by the size header field;

• The checksum field is used to ensure the integrity of the packet. This is accomplished

by having the sender computing a checksum function over the content of the data field,

and inserting it in the end of the network packet. Upon receiving a message, the receiver

computes the same checksum function over the content received in the data portion, and

checks it against the received checksum. If both match, no corruption of the message exists

and the packet is stored to be processed. Otherwise, the packet is discarded.

The protocol was designed to be reliable, and to work in the presence of network failures.

These failures can go from low to high severity. The lower severity ones include packet losses

and small network failures. For these situations, the protocol maintains a structure with already

transmitted packets, which is used to retransmit in case a loss occurs. The packet numbers

associated with each packet are used to deliver the packets in the corresponding order, and to

request a retransmission in case any packet is lost. High severity failures include severe network

failures, in which case it is not possible to reconnect. For these situations, the data read from

the sensors is stored in a dedicated file in the USB storage device that is connected to the on-

board computer, to be subsequently used in the pit station to load information corresponding to

the session.

Although the new version of the software framework also adopts the existing communication

protocol, some improvements and modifications have been introduced. These relate not only to

the design of the protocol, but also to some specific implementation details. The first tend to

ease the modification of the content that is sent in each network packet, presented later in this

section, while the second enables the software to be used on multiple operating systems. The

implementation details are further described on Chapter 4.

Regarding the design of the protocol, it was agreed with the FST team members to change

the structure of the used network packets. This modification was necessary in order to make the

communication protocol as independent as possible from the content transmitted between the two

stations. This way, it is possible to change what is transmitted in the packets without changing

their structure. Besides this, the network packet structure was also modified to cope with the

required flexibility degree in what regards to the sensors to be supported by the system, and

therefore their management. In fact, in the previous version of the framework it was not possible

to send information from two sensors in the same network packet because its structure was strictly

designed to accommodate data from one sensor only. With this modification, it is now possible to

send data from an arbitrary number of sensors in just one single network packet, avoid network

25

3. System Architecture

delays introduced by transmitting a bigger number of packets. The main difference in the new

packet structure, illustrated in Table 3.2, lies in the removal of the header field with the identifier

of the sensor, which is now sent in the data field. The latest becomes indeed a structural field,

where the identifier of the sensor is sent alongside the relevant content that it originated. Since

the ID has a fixed length, it can always be read from the data field, without the need to have its

size being given. The sensor data is placed next to the identifier. Hence, the size of the sensor

data is variable and depends on the considered sensor. Consequently, the receiver will have to

infer, from the received identifier, the length of data that should be read from that packet. For

such purpose, a parametrization table will be filled in the pit station that sets the payload size

associated to each sensor.

16 bits 16 bits The number of bytes indicated by the size field 8 bits
Packet

Number size Data (sensor id, timestamp and measurement) Checksum

Table 3.2: New packet structure.

Besides its conventional usage for sensor data transmission, the identifier portion of this field

can also be used for control messages. These can be: acknowledgements, to signal the reception

of some packet; requests, to request the transmission of some packet; sync, to synchronize the

current packet number in both stations. Other two types of messages exists that are not included

in the control messages category and have the purpose of starting and finishing the execution of

the communication between both stations. These are: start, to start the communication between

both stations, and stop, to finish the ongoing communication process. Each of this messages

have a dedicated identifier, in order to be clearly identified.

3.3 Mobile Station Architecture

This section describes the architecture of the mobile station in more detail. As it was already

mentioned, this is the part that is responsible for acquiring data from the vast set of sensors

connected to the CAN bus and from the on-board GPS device, as well as to send this data to

the pit station. Hence, the mobile station architecture of the framework was structured according

to the needed functionalities. These are: reading data from the CAN bus, reading data from the

GPS receiver, transmitting the data over the network. This structure can be seen in Figure 3.2,

which also includes the external components used for data acquisition and transmission over the

network.

The depicted elements are described as:

• Wireless USB Device: Used to ensure a network connection in the mobile station.

26

3.3 Mobile Station Architecture

Figure 3.2: Architecture of the mobile station side of the framework.

• Wireless Communication Protocol: Used by the framework for the transmission of mes-

sages through the network. This directly uses the device mentioned above, for transmitting

and receiving messages over the network.

• Framework Communication Protocol: Deals with all communications between both sta-

tions at the framework layer, thus being responsible for ensuring the reliable transmission of

data over the network. Since the mobile station is the place where sensor data is produced,

this module will be mainly concerned with sending the data gathered from the sensors. Be-

sides receiving messages to start and stop a real-time, it will only receive control messages

from the pit station, used to ensure the ordering and reliability of each transmitted data

packet. This module was already implemented in the previous version of the framework,

ensuring the protocol further described in Appendix A. The new version counts with the al-

ready described adaptation to include the improvements outlined in the previous section. It

works together with the Wireless Communication Protocol and the Wireless USB Device. In

practice, this was the only module of the mobile station that was affected by this thesis.

• GPS Receiver: Performs the communication with the GPS satellites, calculating the abso-

lute position of the mobile station on Earth [8].

• GPSd: Independent daemon and device driver that runs in the operating system layer,

which makes the interface between the GPS receiver connected to the mobile station and

the framework. It reads coordinates data from the receiver and converts it to convenient

data structures, which are passed to the framework [8].

• GPS data acquisition: Receives the coordinates data from the GPSd daemon and formats

it accordingly, in order to be subsequently used by the Framework Communication Protocol,

before being sent to the pit station [8].

27

3. System Architecture

• CAN/USB transceiver: Connected to the CAN bus, it allows the sensors installed in the

car to have their measurements transmitted to the single board computer. This is done by

transferring the data received from the CAN Bus into the USB bus.

• CAN sensors data acquisition: Responsible for receiving the sensors data from the above

described transceiver. This information contains not only each value that is read from a

specified sensor, but also a unique timestamp generated by the CAN bus. Just like the GPS

data acquisition module, this module also formats the received data accordingly, by using

the Framework Communication Protocol to send it to the pit station.

The above described modules compose the structure of the mobile station and are deployed

in the mobile station infrastructure described in section 2.4.1. However, only one, the Framework

Communication Protocol, is affected by this work. In the previous version of the framework, this

module used the network packet structure depicted in table 3.1. It forced sending one network

packet per measurement gathered from the sensors. To overcome this, the design of the Frame-

work Communication Protocol was changed, particularly to accommodate a new network packet

structure, which would allow data from an arbitrary number of sensors to be sent at once.

3.4 Pit Station Architecture

This section describes the architecture of the pit station in more detail. As mentioned above,

this is the part of the system that is responsible for receiving, processing and displaying the data

from the sensors and GPS receiver to the users. Its architecture was also structured based on

the needed functionalities. These are: displaying information to the users, store the sensor data

on the database, managing the data stored in XML files, processing data from the sensors and

from the GPS device. This structure can be seen in Figure 3.3, which also includes the external

software components used for database operations and data transmission over the network.

Figure 3.3: Architecture of the pit station side of the framework.

28

3.4 Pit Station Architecture

The elements contained in the architecture of the pit station are described as follows:

• Wireless Communication: Communication infrastructure contained in the pit station, which

enables the transmission of messages to the mobile station.

• Framework Communication Protocol: Deals with all communications between both sta-

tions at the framework layer, thus being responsible for ensuring the reliable transmission of

data over the network, performed when data is being acquired in real time. Regarding the

main tasks of the pit station in what refers to network communication, it will mainly act as a

receiver, receiving all the data gathered from the sensors at the mobile station. Additionally,

it will send back control messages to the mobile station to ensure the ordering and reliability

of the transmitted packets. This module was already implemented in the previous version

of the framework, ensuring the protocol described in Appendix A. This updated version also

counts with its adaptation to include not only the improvements outlined in Section 3.2, but

also with the introduced modifications to provide an operating system independent applica-

tion. As such it makes use of a cross-platform interface which can be used in any of the

required operating systems. It works together with the Wireless Communication module.

• Database Management System: This is the module that represents the actual database.

The framework uses this module to make all data related to the sensors and the GPS re-

ceiver persistent. It provides easy means for accessing previously logged data and analyse

it at any time. This module is cross platform, hence available for the operating systems

required by the end users.

• Database Operator: Since the data gathered by the sensors installed in the car need to be

made persistent to enable posterior analysis, this module is responsible for all operations

related the manipulation of the sensor data over the database at the framework level. Fur-

ther more, it makes use of the Database Management System to achieve this purpose, and

enable the data to be available at any time. The data to be stored belongs to the sensors

installed in the car as well as sensors composed of mathematical manipulations over the for-

mers. This module provides support for storing data when receiving new sensor information,

and for querying for data when analysing previously stored information.

• XML Data Manager: This is the module mainly related to the flexibility provided to the users

in what regards to their preferences. These preferences may include sensor information,

information related to the GUI, or user personal preferences (such as loading the last project

at start-up). This is mainly useful, for instance, to enable the GUI to adapt to each user profile

and display only the required information. This allows the user to chose which information

should be loaded, corresponding to the sensor data, and hence avoid loading unnecessary

data. It uses information gathered from user input, to manipulate data in the corresponding

XML files. It also provides interfaces for all processing operations related to read, write and

update user preferences into these files.

29

3. System Architecture

• Sensor Data Processor: The information related to the sensors has to go through some

processing before being able to be displayed to the users, or stored in the database. The

aim of this module is to process all the data related to the sensors connected to the CAN

bus at the mobile station as well as the data representing posterior manipulations over these

sensors, before this can be stored and displayed. This module uses the XML Data Manager

module to get any information related to the sensors that it needs to perform the operations

over their data, and the Database Operator module to store any data in the database.

The main functionality of this module consists on applying mathematical formulas to sensor

data. When creating a new session, either real-time or offline, these formulas are applied

to the data received and then this is stored in the database or displayed. For the sensors

composed of a mathematical manipulation over other sensors, it first implements a specific

interpolation over the set of data points in the sensors present in the manipulation, followed

by applying the corresponding mathematical formula for interpolation set.

• GPS Data Processor: It is responsible for processing and storing all the data related to the

positioning of the car, gathered from the GPS receiver in the mobile station [8].

• Operation Manager: This module has two main purposes: one consists on being inter-

face between the Graphical User Interface module, and the remaining modules (except the

Framework Communication Protocol), when some user initiated operation needs to be per-

formed (e.g. load previous session), or to fetch data to display to the users; the other is to

work as an interface between the Framework Communication Protocol and the Sensor Data

Processor modules, when data is being acquired in real-time. Basically, it coordinates all the

operations performed in the framework, either initiated by the user or caused by new data

arriving from the mobile station, by issuing the corresponding operation to be performed on

the module responsible for the task when an external event occurs.

• Graphical User Interface: This module is the direct point of interaction with the end users,

where they request the operations to be performed, and analyse the data that is displayed.

It manages all the data associated to the user interface, provides the users with means to

adapt the interface to their needs, and works alongside the Operation Manager to adjust to

this set of needs, by requesting the necessary information to generate a representation to

be displayed to the users. This module makes use of several widgets to provide the user

with all of its functionalities, which can be divided into three categories: manage information

related to a particular session (e.g. sensor information, user preferences, mathematical

manipulations); display of graphs and gauges showing sensor data; display of sensor data

values alongside other session parameter values defined by the user.

This station is where the improvements are more relevant. In the previous version of the

framework, it lacked key features that prevented the team from using the application. Namely, the

team needed a cross-platform framework, since not all team members use the same operating

30

3.4 Pit Station Architecture

system; the set of features available did not fulfil all the users requisites, since they were not

able to manage the information related to the sensors through the application; the graphical user

interface, was not designed to accommodate the user working styles.

For the new version, these difficulties were overcome by using a supporting application frame-

work to help making the pit station implementation operating system independent. The imple-

mentation counts with new modules that allow the users to manage all the information related to

sensors through the application, and a new graphical user interface that is designed to adapt to

each user profile and to allow the users to perform the needed operations for the type of analysis

that is hereby considered.

31

3. System Architecture

32

4
Pit-Station Implementation

Contents
4.1 Summary . 34
4.2 Cross-Platform Application Framework . 35
4.3 Framework Communication Implementation 36
4.4 Database Management and Implementation . 39
4.5 XML Data Manager . 42
4.6 Sensor Data Processor . 47
4.7 Operation Manager . 51
4.8 Graphical User Interface . 52

33

4. Pit-Station Implementation

4.1 Summary

In this chapter, a detailed description of the pit-station implementation is provided. It is based

on the architectural structure of the pit-station, described in the previous chapter. It starts by pro-

viding a brief depiction of the cross-platform framework that was used to support the development

of this side of the framework, followed by a detailed description of the particularities of each of the

comprised modules in the earlier presented pit station architecture.

It is important to note that only the modules that were implemented or modified in the scope

of this thesis will be considered by the following sections. Hence, all the pit-station modules are

described except for the GPS data processing module, since it was developed in the context of a

previous work [8] and it was not changed in the context of this thesis.

The programming language that was chosen for the implementation of the pit station software

was C++, because the goal was to have a an efficient language while being object oriented, in

order to be easy to maintain and modify the code. Additionally, some development tools were also

used to support in the development of the system to best fulfil the user requirements. These tools,

presented in Chapter 2 and herein detailed, in the sections describing modules the in which they

were used. It should be reminded that the main objectives of the pit station are concerned with

providing the users with a comfortable working environment, while providing the required set of

functionalities. This, alongside the desired operating system abstraction, were the most important

factors that were taken into account during the development process.

As described in the previous chapters, this station is responsible for processing, storing, and

displaying to the users the data gathered at the mobile station. This means that it comprises the

most fundamental elements to enable users to perform a useful analysis of the vehicle conditions.

This analysis may be performed in two different modes, namely, when data is being acquired in

real time, referred to as real-time, and when loading previously logged data from the database,

referred to as offline. It is easy to identify that, with these requirements, there is a need for an

application to provide the functionalities suited for the type of analysis hereby considered, with

an integrated user-friendly graphical interface enabling the users to perform their tasks. Thus, the

end result of this station is an application capable of performing the types of operations needed by

the users, with a dedicated graphical user interface to display the data in the way that it improves

the quality and productivity of their analysis sessions.

The previous version of the framework had three threads executing in the application. These

were:

1. A thread to deal with the presentation of information to the user. This thread also dealt with

the processing of loaded data and operations over the database when in offline mode. It

also issued the starting and stopping session operations, for real-time mode.

2. A thread to deal with the processing of data and the operations over the database, when

34

4.2 Cross-Platform Application Framework

in real-time mode. This thread processes the data and sends the information to the above

thread, which at this point will only display it in the graphical elements.

3. A thread dedicated to the reception of network messages when in real-time mode. This

thread implements the earlier described communication protocol, although without the im-

provements made in the context of this thesis.

Although the new version of the framework also comprises the execution of three threads, the

required tasks will be split in a different manner. The new task division across these threads is

the following:

1. A dedicated thread for operations related to the network communication between both sta-

tions. This thread implements the earlier described communication protocol.

2. A thread for coordinating all the operations over the data. This encapsulates all type of

operations to be performed over the information, such as database operations, process

sensor data and GPS data, perform mathematical manipulations over the sensor data, etc.

This thread receives information from the communication thread, presented above, when

data is being acquired in real time. It also provides information to the thread described

below.

3. A dedicated thread for the user interface. This is responsible for providing the users with the

graphical means to allow them performing a useful analysis. It deals directly with user input,

and it requests information that it needs for building the correct views to be displayed to the

users from the above thread.

As it can be inferred from the above description, the main changes from the previous to the

current version of the pit station implementation lie in the thread which presents information to the

user. In the current version, this thread no longer performs any processing over the data or issues

directly any network operation. The processing over data is made by a dedicated thread, con-

cerned with the processing and the storage of data. The network operations are also performed

on a dedicated thread. The allocation of the several modules comprised in the architecture of the

pit station to each of the above presented threads is depicted in Figure 4.1.

4.2 Cross-Platform Application Framework

This subsection describes the adopted approach to assist in the development of the aimed

application. A cross-platform application framework was considered for this purpose, in both the

previous and the new versions of the application. In this new version, it was decided to use

the same framework as adopted in the previous one. This subsection outlines the application

framework adopted for the previous version of this project, followed by the reasons why the same

framework was used for the development of the new version.

35

4. Pit-Station Implementation

Figure 4.1: Allocation of the pit station modules to the corresponding threads.

In the previous version of the application, the Qt framework [19] was adopted for this purpose

[7]. The necessary requisites for such a framework would be to provide operating system inde-

pendence, the required means for displaying several types of technical widgets, offer an IDE for

faster graphical user interface development, and have good documentation support. With this

requisites in mind, the first choice would be to continue with the same framework that has been

chosen for the previous version of the software, as it directly satisfied all requirements [7].

The other considered frameworks were GTK+ [18], and wxWidgets [17]. As for GTK+, the

option was disregarded since it was designed primarily for applpication development using the

C programming language, although it has the option of integrating several binds for many other

languages, including C++. However, some useful higher level features that are provided by Qt

(for example, signals and slots), are not provided at the same level by GTK+ or, in this particular

case, by its C++ bind. As for wxWidgets, it was also disregarded. The reasons were that Qt is

more matured in network programming which is also a requisite for this system. As an example,

Qt offers matured dedicated features for User Datagram Protocol (UDP) communication, unlike

wxWidgets. The other reason is concerned with the better support available for Qt than for wxWid-

gets. Besides this, Qt has its own distributed IDE, alongside with Qt’s libraries, developed with

the purpose of better providing the users with a more easy and intuitive use of Qt’s features to

improve their productivity.

4.3 Framework Communication Implementation

This subsection describes the decisions that were considered for the implementation of the

communication protocol in the pit station. It starts by briefly outlining the protocol implementation

for the previous version of the framework, followed by the description of the improvements that

36

4.3 Framework Communication Implementation

were introduced for the current version.

In the previous version of the software, the communication protocol was operating system

dependent, namely it could only be used on an Unix based operating system. The communication

was made possible through the usage of connectionless Portable Operating System Interface

(POSIX) sockets, by using the UDP. The reason for choosing this protocol was mainly due to the

imposed system requirement to deal not only with packet loss but also connection losses. The

other alternative would be the usage of Transmission Control Protocol (TCP), which guarantees

a reliable transmission of packets while a connection is set. However, the system would still have

to deal with the mentioned connection losses and so it would still have to implement a reliable

transmission protocol, duplicating this functionality. Besides this, the TCP protocol also introduces

significant latencies that would make the real-time transmission of information more difficult.

The network communication tasks can be divided into two categories: sending and receiving

network messages. Starting by the latest, the processing of newly received information was

mainly split between two threads when working in real-time. One thread was blocked waiting for

a network packet to arrive, while the other was waiting for an acknowledgement that new data

is ready to be processed. In other words, the first thread was blocked waiting for new network

packets, upon which it retrieved the relevant data from the packets, and stored it in a list of received

messages. The second thread was blocked until any new data was put in the list of received

messages to be further processed. Hence, a control mechanism had to exist to coordinate these

two threads. The chosen method was based on the producer-consumer concurrency mechanism,

with both threads using a shared semaphore to ensure the access control to the list of received

messages. Hence, when relevant data was retrieved for each newly received packet and stored

in the list, the semaphore was updated to provide access for the new resource. This way, it is

ensured that the thread responsible for processing the relevant data on each network packet is

blocked until there is at least one available. This is illustrated in Figure 4.2.

For the sending side of the implementation, there are two situations in which messages are

sent. One is for starting and stopping a session, and the other is a retransmission of a network

packet. For the first situation, the thread responsible for sending the messages was the same that

displayed the content to the users. For the second situation, an independent thread was launched

to take care of the retransmission task every time a retransmission was required.

Since the processing capabilities of the devices used for data analysis in the pit station are not

as constrained as they are in the mobile station, the changes introduced for the new version were

mainly related to two relevant requirements: one is the portability of the software across multiple

operating systems, with a particular consideration to the Microsoft Windows operating system, as

this is widely used by the end users; the other is to make better use of the processing resources.

Since the previous version of the framework was specifically tailored for Unix based operat-

ing systems [7], a new implementation of the communication layer had to be considered in order

37

4. Pit-Station Implementation

Figure 4.2: Receiving and processing new information in the previous framework version.

to satisfy the new requirement concerned with operating system independence. To solve this

problem, the option of having one specific implementation for each operating system in which the

framework should run was considered. This option was immediately discarded because, there is

another approach that revealed to be much more effective for this purpose and avoids the need

to write the same functionalities for different operating systems. The choice was the usage of Qt’s

sockets API [19]. With this approach, the network layer implementation is made independent from

the operating system in use, allowing for a single version to run on every operating system on the

pit station end. The only requirement is to have Qt libraries installed, which is possible for the tar-

get end user devices. Additionally, although Qt can be used with several programming languages,

the C++ binding was chosen, since this was the programming language selected for the whole pit

station implementation. For the second requirement, concerned with making better usage of the

processing requirements, another Qt feature was taken into consideration: Qt signals and slots.

This avoids the need to have any thread being explicitly blocked by locks or semaphores, waiting

for some data structure to be updated by another thread, thus wasting processing resources. The

threads communicate with each other through this signal/slot mechanism, provided by Qt API.

In the new version, both the receiving and transmitting messages procedures are performed by

using the signal/slot mechanism mentioned above. For such purpose, there is a dedicated thread

for network operations, which has particular methods (called slots) that are executed upon receiv-

ing specific signals for message transmission and reception. Hence, when a network message

arrives to the pit station, a specific signal is emitted by Qt, and a slot in this thread is executed

to read the new message. If a message contains sensor data, a signal is emitted in the commu-

nication thread, and a slot is executed in the thread dealing with the data processing, to process

the new arrived data. As for transmitting messages, the thread that coordinates the operations

38

4.4 Database Management and Implementation

over data sends specific signals to the communication thread and another slot is executed in the

latest, that transmits a message. This process is illustrated in Figure 4.3.

Figure 4.3: Network processing in the new framework version.

For the implementation of the protocol, two independent aspects had to be taken into account.

One deals with the operations on the queues, (see the protocol design described in Appendix

A), and another deals with network operations. The first has operations related to selections,

insertions and removals from the queues used to manage the received and sent network mes-

sages. The second is an extension of the class QUdpSocket provided by Qt Framework. The

class QUdpSocket provides platform independent methods for network operations.

4.4 Database Management and Implementation

This section describes the decisions that were taken with regards to the database, not only in

terms of the used database management system, but also about the implementation details for

accessing information in the database. All the data received from the mobile station is made per-

sistent through the DBMS, to enable its posterior analysis. This provides a standardized mecha-

nism of storing, accessing and changing data, without incurring into the overhead of implementing

a less powerful storage system and yet, have to face problems arising from its implementation.

This also provides the means for application and operating system independence, where data

can be accessed from different applications without any particular protocol implementation, since

this is made using SQL, a well known standardized language for database management. In the

previous version of the software framework, the used database management system was SQLite

[3]. However a new database management system had to be adopted for the following reasons:

39

4. Pit-Station Implementation

• Having the whole database stored in a single file leads to concurrency issues, since multiple

writes, and simultaneous reads and writes cannot both happen, even if they are performed

on different data fields;

• Using a single storage file directly affects speed. On the bright side, the SQLite database

allows the operations that are done inside a single transaction to discard the need for mul-

tiple lock acquisitions and releases on the same database file. However, since there are

multiple transactions occurring in the system, this still results on many lock acquisitions and

releases, which are costly operations and hence, forcing data to be stored in the database

at a slower rate.

• SQLite does not provide some features needed for this project, since the set of data types

is very restricted.

Hence, the considered improvements were mainly made to overstep the problems presented

above. The set of most relevant improvements that were introduced in the new version of the

software framework relate to the changing of the database management system in use and turn

operations over the database into operating system independent. The most relevant requirements

of a database management system in this project were:

• Cost - The academic nature of this project project imposed the choice for a free database

management system.

• Speed - It needs to be fast, in order to cope with the rate at which data arrives at the system.

• Portability - It should be able to be installed in all the considered operating systems.

• Conform to SQL language - As a standardized language for database management, its use

in this project forces the choice for the DBMS to implement most of the SQL features.

• Manageable through Qt - In order to have the platform and the database independent, an

appropriate interface for accessing SQL databases should exist, so that the database can be

managed using the QtSql module [19], which provides cross-platform database integration

with the rest of the application.

• Easy administration - To facilitate maintenance, it is necessary to have a good administration

tool.

With regard to these aspects, the choice was made between two database management sys-

tems: PostgreSQL [1], and MySQL [2]. The factors that uniquely influenced the final choice were

related to speed in multi-transactional environment, as all the others were easily satisfied by the

alternatives that were taken into account. Concerning the speed of MySQL and PostgreSQL

DBMSs, there is an active discussion on which is faster. This, however, depends on indirect fac-

tors such as, the specific tuning of the database management system to the target application,

the database structure, and the type of operations which will be performed on it. Accordingly,

the decision that was taken for this new version of the framework is to adopt the database struc-

40

4.4 Database Management and Implementation

ture already designed and deployed in the previous version, as described in [7]. Additionally, the

database should have to handle a significant number of transactions, and possibly concurrent

reads and writes. Since the performance would not be significantly affected by choosing either

MySQL or PostgreSQL, another factor was taken into consideration: the acquisition of Sun Mi-

crosystems by Oracle. With this acquisition, the future of MySQL became an uncertainty. Either

Oracle can stop developing MySQL, which would require the database management system to be

changed again since MySQL would not follow up with improvements made on the other database

management systems, or even if Oracle continue to invest in MySQL, only paying customers

will be able to take advantage of the best features. Based on this, the choice for the database

management system fell directly to PostgreSQL.

With regards to the implementation of the operations over the database, this was entirely made

by using the QtSQL module provided by Qt Framework. This not only makes the implementation

operating system independent, but it also turns it into DBMS independent. This is because the set

of operations provided by QtSQL module are already available to be used with any of the possible

DBMS to be integrated with Qt. Hence, the development process of this module consisted in two

tasks: the transition of the old DBMS (the SQLite) into the new one (the PostgreSQL); and make

the implementation of the operations over the database operating system independent. Since Qt

already provides full support to integrate PostgreSQL into an application, the main part of this

task was to abstract the implementation of the framework operations over the database. In the

previous version, these operations were directly performed over the database (SQLite), because

the QtSQL module was not being used.

Additionally, the new implementation also had to consider a relocation of functionalities, be-

cause the loading of data from the database is now performed by the thread that coordinates all

the operations over data, while in the previous version this was done by the thread associated to

the GUI. This means that either the thread that handles the Framework Communication Proto-

col or the thread that takes care of the GUI, will send a signal to the Operation Manager thread

whenever there is an operation to be performed over the database. The operation manager is

then responsible for issuing the correct task to be performed on this module. An example of this

is illustrated in Figure 4.4 for the case of loading a previous session from database.

As referred before, the main type of information that is stored by this module is concerned with

the sensor information loaded in a working session. This means that it also contains the repre-

sentation of a sensor that is used by the other modules, for example the sensor data processor

module.

In what concerns the insertion of data in the database, a batch agglomeration mechanism was

already in use in the previous version, and which continues for this version, in order to achieve

better performance. Hence, instead of executing an insertion operation at a time, for each data

sample originated by a sensor, these are grouped into a transaction which contains insertion

41

4. Pit-Station Implementation

Figure 4.4: Example of database processing interactions between the GUI thread and the Oper-
ation Manager thread.

operations for several acquired samples. In the previous version of the framework, a timer is set

to signal a time-out for every past second, which caused an operation to be launched to commits

the current transaction. For the new version, this time-out was changed to happen every 5 ms, to

achieve better accuracy in storing the data in the database.

In summary, the benefits introduced to this module were concerned with changing the DBMS in

use, restructuring the operations over the database to obtain platform and DBMS independence,

and relocating its functionality both to relieve the GUI processing thread and to enforce a loose

coupling and a high cohesion across the code.

4.5 XML Data Manager

In the previous version of the system, whenever the users wanted to change the number of

stored sensors, they had to do it directly through the DBMS. Hence, there was the need for a

system administrator (or anyone else who knew how to manage data in the database). Only this

way it would be possible for the system to store data related to a new sensor or eliminate data of

an existing one, since this was the only possible way to create the necessary information in the

database to accommodate the desired changes.

In the new version that is hereby presented, and following the requirements that were stated

by the team of end users, it was decided to have a mechanism that would allow the user to

make some configurations without the need for any database knowledge. This would provide the

team with the desired flexibility they require in a testing session for the sensor configuration. In

accordance, it was decided to store this type information in XML files. These can contain several

types of information such as: user preferences, namely if the last project should be loaded upon

42

4.5 XML Data Manager

system start-up or automatically saved on exit; the tuning parameters used in the car for a specific

session, such as the camber angle for a wheel; the existing GUI elements associated to some

session; the list of existing sensors, including those obtained from mathematical manipulations

over other sensors; the implicit post-processing or data conversions of certain sensors, meaning

the mathematical formulas that must be performed over the sensor data before storing in the

database and display to the users. The latest only applies to sensors installed in the car. The

ones composed of a mathematical manipulation do not go through this type of processing, as the

mathematical formulas are applied to data that went already through this process.

The implementation of this module was performed using the Qt XML module. This module

offers a set of operations to read and write data in the XML format. The choice for the XML

representation was based on the desire for an easy and portable mechanism to transfer some

kind of application definitions between the end users. That said, by using this approach the users

can easily exchange any information contained in the files or even the files themselves between

one another. Since XML is a user readable format, there is even the possibility for the user to

interpret the content of some file and transmit to another user. In line with this, it is also easy to

change the content of a file, even without the support of the framework. Assuming that the user

understands the format chosen for storing the information, he can just open the file and edit it

himself without much effort.

Besides this, it also abstracts the implementation for any operating system in which the frame-

work should run, without imposing any restriction to its utilisation. All the XML files that are created

to manage information are put inside a folder named FstApp which is created in the user direc-

tory. The creation, opening and closing of these files is managed by using Qt Framework QFile

interface, a platform independent API to access files. When the user manipulates any of the

configurations, with exception of changing the gauges/graphs (explained in subsection Graphical

Elements), the system overwrites the corresponding XML file with the changes made. On start-up,

the system is configured with the latest up to date configurations loaded from the corresponding

files, with which the system is then prepared to work with.

Just as the previous described module, this module is based on the signal/slot mechanism

provided by Qt. Thus, whenever the user enters some new configurations through the GUI, a

signal is emitted from the GUI thread to the Operation Manager thread. The operation manager

is then responsible for issuing the correct task to be performed on this module. This procedure is

illustrated on Figure 4.5.

4.5.1 Sensors Management

The sensors are managed by means of an XML file containing information about all sensors.

The name of this file is sensors.xml, and if it does not exist, the system will automatically create

it on start-up. The file is loaded every time the system is launched, and the framework provides

43

4. Pit-Station Implementation

Figure 4.5: Sequence steps when setting a new user preference.

a feature, via its graphical interface, for the users to change any type of information related to

the sensors. In this case, this means the sensor’s name, type, identifier, and corresponding

measurements and sample precision (in bytes), that will be received for each sensor.

As an example of the sensors management procedure that is carried out, the expected mea-

surements included in a message from the GPS sensor, related to the position of the mobile

station, are the latitude, longitude, altitude, speed, and a timestamp. These fields have to be con-

figured by the user and included in the corresponding GPS sensor parametrization. An example

of an XML file with a GPS sensor configuration is shown on Figure 4.6. The sensor management

interface is illustrated on Figure 4.14(a) of Section 4.7.

This file is also used to store the configuration of the sensors that represent mathematical

manipulations of other sensors.

Figure 4.6: XML file with a GPS sensor configuration.

44

4.5 XML Data Manager

4.5.2 User Preferences

For the user preferences, a simple XML file with the name user preferences.xml is created

the first time the application is launched, or every time the system cannot find it. At the mo-

ment, two types of personal preferences are allowed: automatically save changes made to the

GUI when exiting the application; and load last working project, on start-up. The users are able

to change these preferences through the GUI, and the preference’s file is overridden with the

new preferences values. The effects of the changes are instantaneous. The representation of

these preferences, when loaded by the application, are two binary variables, which indicate if the

user wants or not each of these preferences to be set. An example of an XML file containing a

combination of these preferences is depicted on Figure 4.7. In the illustrated example, the user

does not want the application to automatically save changes made to the GUI, neither wants the

application to load the last working project on start-up. The session number field represents the

identifier given to a session when one is created. This is generated serially and assigned to every

new session. It is set to 0 in the first time the file is created, or when the user does not want a

previous session to be automatically loaded, because a valid session number must be an integer

greater than 0.

Figure 4.7: User preferences configuration file.

4.5.3 Car Tuning Parameters

The car tuning used for a practice session, is a static list of parameters provided by the users

that relate to the conditions of some properties of the vehicle upon starting a specific session.

These parameters represent the state of some configurations in the car, such as the tire pressure

and the angle that each wheel makes with the vertical or longitudinal axis of the vehicle, that are

static during a practice session. These are also stored in a simple XML file, which is created every

time it is missing. The file is composed of pairs of elements, where the first element is the name

of the parameter and the second the corresponding value. The values stored in the file are always

the last configuration set up by the user. To enable loading a previous logged session with the

parameters associated to it when it was created, each session is also associated with a configu-

ration of these parameters in the database, every time a new one is created. The corresponding

parameter values are loaded each time a session is loaded. These parameters are displayed to

the users, alongside the sensor information, in the GUI. The latest provides a mechanism for the

users to change the parameters at they will. Upon the change, the corresponding file is updated

45

4. Pit-Station Implementation

with the new information. In case the user changes a session parameter for a specific session

after it has been created, the database is also updated with the new set of parameters.

An example of this is illustrated in the file depicted in Figure 4.8. The rear tag section, which

is not stretched, contains a set of similar parameters as for the front tag, each corresponding to

the front and rear sections of the car.

Figure 4.8: Car tuning parameters configuration file.

4.5.4 Graphical Elements

The GUI elements are divided in two categories: graphs and gauges. These are stored in sep-

arate XML files, dedicated to the corresponding category. The files are created every time the sys-

tem notices they do not exist for a working session. The files are named as sessionID graphs.xml

and sessionID gauges.xml, where sessionID is the identifier of the current working session. A

pair of files is created and stored for each new existing working session.

Although the user is able to add and remove graphs and gauges through the GUI, the changes

are not automatically written to the corresponding files. Instead, the user is providing with a

saving functionality that he can use when he wants to save the setup corresponding to the current

graphical display. This functionality is enabled or disabled based on changes made to the current

graphical display. Thus, when the user adds or removes a graphical element from display, he can

use this functionality to store the new changes.

4.5.5 Sensor Post-Processing

The last information that is managed using an XML file is concerned with the definition of

the types of the sensors and of the corresponding post-processing manipulations. The types of

46

4.6 Sensor Data Processor

the sensors are integer values associated to mathematical operations that need to be performed

in order to store the correct value of the sensor data in the database and display it to the users.

Through this configuration, the user is able to define the units associated to the processing formula

for a given sensor, which is always displayed in the GUI as part of the identification of the sensor,

alongside the sensor’s name. The user can change the type associated to each sensor when

configuring such sensor in the system. Separately, the formulas associated to each type can

also be configured through the GUI. The effects of the changes take place the next time new

information for that sensor is received either through the network, or when loading data from a

file.

4.6 Sensor Data Processor

This section focuses on the set of operations that are performed in the pit station over the

sensor data. This data can either belong to a single sensor, meaning one installed in the car

whose data is not dependent on other sensor data, or to a combinational sensor, whose data is

defined as a composition of mathematical manipulations over single sensors data.

For the new version of the framework, one of the main requisites enunciated by the users was

the possibility to perform user defined operations over the sensor data. Since the option of imple-

menting a processing module capable of handling the needed mathematical manipulation was not

viable, a library was considered for this purpose. The requirements that needed to be satisfied by

the library were: the possibility to be executed under all the required operating systems; and offer

enough computational performance to handle the rate at which data arrives at the system.

Based on this, some mathematical parsers were considered: muParserSSE, muParser, fParser,

MTParser, and MathPresso. Among this set of parsers, and according to the benchmarks found

in [26], the fastest considered parsers are muParserSSE [26] and Math Presso [24]. This is

mainly due to an integrated built-in Just-In-Time (JIT) compiler, which transforms expressions into

machine code at runtime. However, both are tailored for Windows, so they were disregarded.

Among the others, muParser was the one which best combined the requirements mentioned

above, together with a better support documentation. Hence, both processing types, for single

and combinational sensors, make use of the muParser [27] library. This library is based on a

convenient structure providing a set of methods for executing mathematical manipulations. The

structure provided by muParser is the Parser. This handles the setup of the mathematical en-

vironment, and consequent evaluation of the expressions. Setting up this environment requires

the definition of the necessary variables to be used as input to the formula, together with the

constants, such as PI.

47

4. Pit-Station Implementation

4.6.1 Single Sensor Manipulation

In the previous version of the software framework, all the data originated from the sensors

had to go through a post-processing transformation, before it could be displayed to the users.

Having this post-processing implemented by software allows a fast analysis and faster decisions

concerning with the vehicle evolution to be made. This process was directly implemented in

the pit station software, since it is where the most powerful computational power lies. These

operations mainly consist on the application of mathematical formulas over the acquired data from

the sensors. Since not every dataset requires the same operations to be performed, a distinction

has to be individually taken for each single sensor. Unfortunately, in the previous version of the

framework, these operation definitions were static. This means that the set of possible operations

to be performed on the gathered data was limited and hard coded in the application. Hence, every

time a new sensor was introduced in the car, someone had to go trough the code and add the

new post-processing definition to application.

Since this is a very strict policy, when compared to the high degree of flexibility that is now

required for adding and removing sensors from the application, a new approach was required to

deal with this aspect for the current version of the software. This is based on the XML mechanism

described earlier. Hence, the users may change the mathematical operations associated to the

sensors, and these are stored in the corresponding configuration file. When the application is

launched, the set of sensors that is present in the users’ configured list is created. Upon creation,

the sensors are then associated with the corresponding mathematical operation, being identified

by a specific sensor type. If no type is defined for a given sensor, no operation will be performed

over the gathered data for that sensor. Once the sensor data is received from the mobile station

or read from a data file, it goes through the process of executing the corresponding operation

for each data sample, whose result is subsequently stored in the database and displayed to the

users. In the case of a working setup in real-time mode, a signal is emitted from the Framework

Communication Protocol to the Operation Manager, which will issue the corresponding process-

ing task to be performed in this module. After this process is completed (and if in real-time mode)

a signal is emitted to the Graphical User Interface, with the post-processed data received from

the mobile station.

4.6.2 Combinational Sensor Manipulation

The values corresponding to the combinational sensors are computed by evaluating the as-

sociated mathematical expression using the samples gathered from other sensors. Both the ex-

pression, and the associated list of input sensors are retrieved from the sensors’ XML file. These

set of sensors do not have any type associated with them. Instead, the values corresponding to

the combinational sensors are computed either from the input values loaded, from the database

or from a file. Alternatively, these can be also computed in real time when data is being received

48

4.6 Sensor Data Processor

from the mobile station through the data received for the single sensors that will compose the

combinational one.

Starting with the case when the information is loaded from the database, the combinational

sensors are created after the single sensors have been created and their information loaded. If

data is missing for at least one sensor, the expression cannot be evaluated because no values

for that sensor can be given as input for the formula evaluation, and no data is displayed for such

combinational sensor. In a normal operation, data will be available for all the single sensors.

Hence, data is loaded from the single sensors that are part of the combinational sensor, and the

corresponding mathematical expression can be evaluated. This would be the simplest case, if all

single sensors had the same sampling instants.

Unfortunately, this is not what happens in practice, when the values are gathered from real

sensors. Therefore, it is necessary to create a single set of timestamps, composed of the inter-

section of the timestamps of the single sensors, and then interpolate the data of each sensor, in

order to get the values corresponding to the missing timestamps.

For this purpose, an interpolation algorithm had to be implemented in order to interpret the

data. The only requirement to be satisfied by the algorithm was to provide a reasonable ap-

proximation to the sensor signals. The considered algorithms for this purpose were the Nearest-

neighbour [16, 23], the Linear [16, 23], and the Lagrange Polynomial [21, 22]. Among this set,

the one providing the level of accuracy required is the Lagrange Polynomial, detailed in Appendix

B, and hence it was the one that was chosen for the purpose. The first algorithm, the Nearest-

neighbour, finds the nearest point in a given data set and assign the same value to the needed

interpolation point. The second, Linear, connects the data points in a given set with straight lines,

and finds the value of the needed interpolation point in these straight lines. Thus, it can be easily

observed that both algorithms do not satisfy the required accuracy for sensor signal interpolation.

The first approximates any point inside an interval range to the closest integer, while the second

assumes that the values of the sensors varies constantly between two points.

Nevertheless, although the chosen algorithm satisfies the degree of precision needed for the

project, it also has a drawback: It is not tailored to deal with a dynamic dataset. Hence, the

adopted approach was an adaptation of the original Lagrange Polynomial algorithm to overcome

this problem.

The Lagrange Polynomial algorithm is designed to create a polynomial of degree N, from a set

of N+1 samples available. The created polynomial goes through all the points that are part of the

N+1 samples, and approximates any point that is not part of this dataset. The only problem arises

if this data set is dynamic, meaning that points can be added to it. The algorithm is not designed

to deal with changes in the dataset, hence a new polynomial has to be created every time a new

sample is added to the dataset. Based on this, the adopted implementation always considers four

points, which are used to build a polynomial of at most degree 3. After the polynomial is built, the

49

4. Pit-Station Implementation

value corresponding to a point that is not in the dataset can be found, by evaluating the resulting

polynomial using that point. The degree of 3 was chosen in agreement with the end users, to

accomplish a reasonable degree of accuracy for the measurements that are being shown in the

analysis.

After this algorithm is executed to obtain the values for the missing interpolated points, the

overall set of data points (overlapped and interpolated) is evaluated using muParser to obtain

the final result. At this point, the obtained values are ready to be stored in the database, as well

as displayed to the user. From this moment on, every time the current session is loaded from

the database, the data for the combinational sensors is loaded, the same way it is for any single

sensor, without the need for this type of processing again.

The case for a real-time data acquisition mode is almost similar. Instead of interpolating and

evaluating a static set of data points for the single sensors included in the combinational, this

is performed with the data that is received from the mobile station. This data corresponds to

measurements of single sensors, and hence it is necessary to check if there is sufficient data

received from the single sensors to perform the interpolation of the data, as well as the evaluation

of the mathematical operation. Hence, every time a new value is received for some sensor, a

test is performed on the data points of the remaining single sensors included in the combinational

one, to check if the interpolation can be performed. In this case, this means that the interpolation

and the evaluation start as soon as there is a non-empty intersection in the time interval of points

received from the mobile station. Just like the data from the single sensors, when the result of

the evaluation of the mathematical expression is obtained for the combinational sensor, its data is

immediately stored into the database, so that it can also be retrieved in a posterior loading of the

current working session.

To display the information of a combinational sensor in real-time mode, the same mechanism

that was used for the single sensors is adopted, as described in the previous section. To illustrate

the workflow associated to an interpolation, Figure 4.9 illustrates the creation of the combinational

data for sensor C, obtained from an interpolation of data from sensors A and B, received in

real-time. The numbers in the figure, represent the timestamps received for each sensor, and

the processing applied to the corresponding received sample. For sensor A and B this means

the post-processing applied to their corresponding values. For sensor C, this means finding the

intersection of the timestamps and applying the algorithm described to find the missing values, as

well as the evaluation of the associated mathematical expression.

It is relevant to mention that the interpolation operation is also used for another feature pro-

vided by the framework. This is associated with the creation of the dataset to be displayed in

one specific type of graph, namely the Scatter Plot presented on section 4.8.1, which includes a

sensor dataset for the x axis and another sensor dataset for the y axis.

50

4.7 Operation Manager

Figure 4.9: Interpolation of the data used to compute the values of a sensor C, composed of a
mathematical manipulation of sensors A and B.

4.7 Operation Manager

This module coordinates all the operations over the data. It manages all the modules, with

exception to the GUI and Framework Communication Protocol modules, which live in their dedi-

cated threads. Its main task is to act as a broker, between these two modules and all the other

modules.

This module implements a set of slots that are executed in response to user interaction over

the GUI and to process newly received sensor data from the mobile station. The communication

between the two above mentioned modules and the Operation Manager is made through the

signal/slot mechanism provided by Qt Framework. The GUI and the communication thread emit

signals whenever some operation must be performed, and a dedicated slot is executed in the

Operation Manager.

On the other hand, since all the other modules are controlled by this module, and hence live

in the same thread, the Operation Manager just issues the correct operation to be performed on

some module, when a signal is received from one of the two above mentioned modules. In case

any information needs to be displayed, as part of the requested operation signalled by the GUI,

this module emits a signal to the GUI module, which contains the necessary information to be

displayed.

Thus, from the point of view of the GUI module, this is the entity from which it gets the required

information to be displayed to the users. From the point of view of the Framework Communica-

tion Protocol, this is the entity that starts or ends the communication between both stations and

processes the relevant data that is received.

51

4. Pit-Station Implementation

4.8 Graphical User Interface

The implementation of the pit station graphical user interface was conducted with permanent

contact with the end users team, to best adapt the interface to their working methodologies and

create the most comfortable environment tailored to their analysis. The graphical user interface,

is the module that directly enables the users to perform a useful analysis and improve their pro-

ductivity during the preparation for competitions. All the data is displayed through the GUI, which

provides the users with several mechanisms to manipulate and visualise it. The previous version

of this module lacked of the most relevant characteristics to provide these benefits to the extent

of user analysis, and hence it was redesigned and improved to create better working conditions.

All the GUI elements are supported by the Qt Framework and the Qwt Library. The latest pro-

vides useful classes for the technical graphical elements. These count with graphs and gauges,

which directly exhibits the information from the sensors and user manipulations, and a timeline

mechanism to browse session data. Qt deals with the overall management of the resources for

the whole application, while providing the rest of the elements used in the GUI, such as Tab, Tree,

and Button widgets.

Just like the other modules, the GUI was required to have a platform independent implemen-

tation. As described earlier, the Qt Framework, as well as Qwt Library, fulfil these requirements,

and hence provide cross-platform support.

4.8.1 Graphical Layout

Besides the significant improvements that were introduced in the back-end part of the appli-

cation (as described in the previous sections), the main set of improvements can be also seen in

the front-end, the part which the users directly interact with. When designing such a user oriented

system, there are essential requirements that much be carefully gathered, such as the user needs

in terms of functionality and visual appearance, and the user behaviour. In the previous version

of the system, some key factors were missing, which inhibit the users from using the system.

In what concerns the user interaction, the main differences start at the launch phase of the

system. In the previous version, the user is presented with a screen where he is able to chose

among three types of projects: real-time data acquisition, previous session data analysis, and

upload data from USB pen drive. According to the new requisites, there should be only two types

of projects to chose: real-time data acquisition and offline data analysis. The offline data analysis

should include both load data from file or from the database. Furthermore, the read of the data

from a file, or the fetch of the data from the database should be more user friendly, just as in other

everyday applications the users are used to work with: a simple file menu, followed by a load file or

open previous session sub-menu entry, directing the user to the corresponding windows dialogue

which enable the user to perform the desired task. The initial screen is illustrated on Figure 4.10,

52

4.8 Graphical User Interface

which replaces the wizard approach previously implemented and depicted on Figure 2.5. The

screen is divided into three main zones, as depicted in the picture, each of these described later

in this chapter.

Figure 4.10: Main screen of the application, with no project initiated.

In the previous version of the system, the user is faced with the perception that each type of

project originates a different application right from the beginning. There is a specific sequence of

steps for each type of project, which the user must follow before reaching the main user interface,

which is different for each type of project. The end users did not appreciate this initialisation

method and stated their interest in that both (real-time data acquisition and offline data analysis)

projects should have a unique and unified interface. This interface should also focus on flexibility

to manage what users want to see on the screen. This means that the wizard approach, with

the mandatory sequence of steps in the previous version was discontinued. The total control of

the application should be given to the user through the single and unified GUI and the result is

depicted in Figure 4.10.

Concerning the real-time data acquisition project of the previous version of the application, one

point that more seriously demonstrates its lack of integration is the random disposal of the various

types of graphical widgets. In one hand, these widgets can be visualised in different windows, as

if they not even belong to the same application, requiring a lot of effort from the user to organise

them himself and maintain a global view of the system. On the other hand the users may also view

these widgets all placed in a single window, but with no possibility to organise them at their will.

In this screen, the non-integrated and not flexible environment provided by the previous version

is even more revealed since the widgets are displaced inside the same window, without being

53

4. Pit-Station Implementation

adapted to it, both in terms of disposition and dimensions. Although there exists the possibility to

have widgets displayed in tabs, the user is forced to have one tab for each widget, thus preventing

one of the main goals, namely, to easily compare data on several graphs.

Hence, the criteria that were taken in this new verison of the project to overcome the drawbacks

of its GUI were:

• Build a single windowed interface common to both types of projects;

• Design the graphical layout taking into account the best way to accomodate and organise

the unified set of functionalities required by the end users;

• Provide an intuitive and quick way to compare different data;

• Provide the end users wht the desired flexibility and adaptation of the graphical user interface

to various user profiles.

An example of the two types of screens of the previous software framework as described in

this section are shown in Figure 4.11 and 4.12. These screens can be compared to the new user

interface prototype for the new version, as illustrated in Figure 4.15.

Figure 4.11: Previous FST academic solution: Main window with the real-time project graphical
layout [7].

In what regards to the offline data analysis option of the previous application, there are also

some relevant negative factors that the users did not like. First, during the execution of the appli-

cation, the user has no option to change the session he is currently analysing. This means that

if he wants to work on another previously stored session, he would have to close the application,

start it again and chose the new session to work on. The users are also forced to have only one

single type of graph, which clearly do not satisfy all their needs. Additionally, there is no direct

way of identifying a sensor value on the graph. The only possibility is to look at the graph, look

at the scale displayed by its side, and try to match the sensor value to one of the scale values.

Furthermore, when showing multiple sensor data in a graph there is no direct way of identifying

54

4.8 Graphical User Interface

Figure 4.12: Global window of the previous version of the framework, with docked widgets.

each sensor line by looking only into the graph. This is because there is no sensor identification in

the graph. To identify which sensors are displayed, the user has to check in the list of all sensors

names displayed below the graph alongside their corresponding colours and try to match one with

any of the lines in the graph. Figure 4.13 presents a screenshot where this problem is illustrated.

Figure 4.13: Offline data analysis GUI from the previous version of the framework.

To overcome the referred problems of provided by the graphical user interface of the previ-

ous software framework, the following criteria were taken into account in the design of the new

graphical user interface:

• Enable multiple session loading in a single application execution, provided by a user friendly

mechanism such as: a file menu, followed by a load session menu which prompts the user

to chose the session he wants to load. In case the user is working on an already opened

session, a verification is performed to check if the user wants to save the work done upto

the moment in the previous session. In case the new session to be loaded is the one the

user is currently working on, nothing happens;

55

4. Pit-Station Implementation

• Provide the user with several types of graphs displayed on the screen, to facilitate compari-

sions of data;

• Provide better information of the data that is presented in a graph, by displaying the corre-

spondinf value when the user clicks in a point of a graph;

• Provide better identification of the data displayed in a graph, by labeling each function with

the associated sensor and color;

• Possibility to zooming, both in and out, and browsing of session data.

The above criteria, alongside the others that were described for the real-time project, formed

the main set of criteria that were taken into account in the development of a single and unified

graphical user interface, which suits both types of projects. The proposed improvements can be

observed in Figure 4.15, which represents the main screen of the application, common to both

types of projects.

From this figure one can identify the main difference from this version to the previous one: the

existence of one single interface for the two types of projects. This reveals the overall integration

of all the available features, creating the mental idea of a unique global system. This unique

interface also provides the users with much more flexibility than the previous one, allowing the

users to manage the interface according to their needs.

The GUI is based on a set of operations based on the signal/slot mechanism provided by the

Qt Framework, which deals with the necessary updates to the information displayed on screen.

When the user requests an operation, a signal is emitted to the Operation Manager, so that it

executes the required action and generates the information to be presented to the user by the

GUI. Upon the generation of this information, the Operation Manager emits a signal to the GUI

and a corresponding slot is activated, to handle the representation of the received information.

Hence, the GUI module is structured as a set of slots, that respond to signals that are generated

either by user input or by the Operation Manager, and a set of signals to request information from

the Operation Manager.

The interface is divided into three main zones, as marked in Figure 4.10: anupper zone com-

posed of the menu and a tool bar identified by the red rectangle in the figure, a central zone

where the relevant information is displayed identified by the green rectangle, and a lower zone

composed of a status bar to display state information for the data being presented, identified by

the blue rectangle.

The most relevant elements that are displayed in the interface (namely the graphs, gauges and

the slider) display information from the sensors and help to browse the data in a given session.

The user is able to create and remove these elements from the interface according to his needs.

The rest of this section describes, in more detail, each of these defined zones, specifying each of

their components (see Figure 4.10):

• Upper zone : This is where the user makes actions related to the most common tasks

56

4.8 Graphical User Interface

associated to system configurations, project and file management. This zone is composed

by a menu bar and a tool bar. The menu bar is composed by a menu and a submenu

elements, provided by Qt Framework. The operation of these elements is based on the

signal/slot mechanism already described. When the user selects a specific menu, the se-

lected element emits a signal to assert the user action. In accordance, a set of slots were

implemented to define the corresponding application behaviour for each of the menu items.

The same happens for the tool bar. This contains a set of buttons which emit a signal every

time the users clicks. Again, a set of slots were implemented to define a specific behaviour

for each of these buttons. Many of the elements of both the menu bar and tool bar have

the same behaviour and thus share the same slot. Among the set of defined operations,

the most relevant are: loading data from a file, loading previous logged data, saving data in

a Comma-Separated Values (CSV) file, starting/stopping a live session, managing the sen-

sors, configuring the user preferences, managing the sensor types, managing mathematical

manipulations, saving the state of the GUI, etc. The implemented interface for configuring

the sensors and their types is illustrated in Figure 4.14. This is one of the most relevant

features introduced in the new framework.

• Central zone : This is the most important zone, since it is where the relevant information is

presented to the users. This zone is responsible for providing the users with the necessary

information they need during a working session. Figure 4.15 shows a division of this zone

into five sub-zones. Each sub-zone has its specific purpose.

The topmost sub-zone, shown in red, is responsible for displaying the session details to the

user. This comprehends information, displayed as text, such as the name of the session,

the identifier, date and time of creation, car driver, weather conditions and the location of the

session. This text colour is set to black whenever the layout is saved. When changes occur,

the text colour is set to red to signalise that there was an unsaved change.

The second sub-zone, marked in green, is used for the purpose of browsing through the data

of a given session. This is composed by a slider, which is one of the used elements from

the Qwt Library. Since Qwt is tailored to be integrated with the Qt Framework, the operation

of its elements is also based on the Qt signal/slot mechanism. Therefore, the slider emits

a signal every time the user changes its value. Hence, this signal must be connected to a

dedicated slot which, gathers essential information and performs the necessary updates in

the relevant graphical elements.

The zone in blue is one of the most relevant in the developed interface, as it displays the

graphs and the GPS item. This zone is composed by a tab widget, provided by Qt Frame-

work, where items can be added. The user is also able to change the name of the tabs.

The user also controls the elements by means of a context menu, provided upon a mouse

right-button clicking in this zone. This menu is shown in Figure 4.16(a). With this menu, the

57

4. Pit-Station Implementation

(a) Management of the existing sensors. This is
where the user can add and remove sensors
from analysis.

(b) Management of the sensor types. This is where the user
can define the mathematical post-processing formulas
associated with the sensors.

Figure 4.14: Graphical interface of two functionalities provided by the menu and tool bar of the
application screen.

user is able to control what is displayed in each tab, by adding or removing elements. Each

tab can accommodate one of three types of graphs, namely time graph, scatter plot, his-

togram, and it can also accommodate a track map. However, along the system specification

the end-users stated the need to be have more than one time-graph per tab. As a conse-

quence, this is the only type of graph that the user is able to add more than once in a given

58

4.8 Graphical User Interface

Figure 4.15: Central zone of the interface, divided by its functionalities.

tab. Upon adding a specific type of graph (excluding the track map), the user is prompted

with the list of sensors to chose which should be associated with the graph. As soon as

the user adds a new graph, a set of new possible functionalities arise. These can be found

through the graph context menu. In case of a time graph context menu, shown in Figure

4.16(b), this allows the user to zoom in and out the time range to be displayed, to add and

remove sensors from the graph analysis, and to add or remove another graph in the same

tab. For the other types of graphs, this menu only allows the user to remove the item from

analysis. The graphs also have a legend, which identifies the set of sensors associated to

the data displayed in it graph. From Figure 4.16(b), one can see the identification of each

sensor with a square beside it filled with the colour associated to that particular sensor. The

colours are associated with the sensors in a round-robin fashion by using the set of colours

provided by Qt. At the moment, this set is composed by 148 colours, which fully satisfies

the users requirements, since they have stated the need for at most 20 colours.

For the case of a GPS track map, a particular context menu as well as the new GPS track

map graphical interface, illustrated in Figure 4.16(c), is displayed. This enables the user to

perform operations on the map, such as applying filters to data, saving or loading a map,

storing map information to a file (PDF, KML or CSV), removing the item from analysis, etc.

The track map enables the user to analyse a sensor value when this is being associated

to a position on the track. It was redesigned to conform to the new graphical user interface

layout.

Whenever the user changes any information related to the tabs, the state of the GUI is

marked as being changed. As it was already mentioned, upon a change, the topmost zone

displaying the session information is set to red, and the user is able to save the state of

59

4. Pit-Station Implementation

(a) Context menu when adding a graph. (b) Context menu of a time graph.

(c) Context menu of a track map.

Figure 4.16: Tab, graph and track map context menus, allowing the user to manage the information
displayed.

the GUI. In case of a saving operation, the information related to the content of the tab

is stored in the session graphs XML file, as previously described. The information accom-

modates data related to the graphs, such as their type and their sensors, together with the

identification of the tabs in which these are displayed.

When a time graph or scatter plot is displayed, the user is able to select a specific sample

to further analyse information related to that particular sample. In the time-graph case, a

vertical marker is displayed in the graph, as can be seen in Figure 4.15, with a cross-marker

over the existing curves to identify the selected sample. For the scatter-plot, only a cross

marker is used, which identifies the selected sample. This functionality, alongside with the

zooming in or out functionality, are linked across tabs. This means that if one of these

operations is performed in a graph on some specific tab, the results are propagated across

the other remaining tabs. For the particular case of selecting a specific sample or point in

time of a graph, the output is also propagated to the gauges (described later for the brown

zone).

Again, all of these functionalities are performed based on the signal/slot mechanism. These

elements, provided by the Qwt library, define dedicated signals that are emitted upon the

user interaction with the graph. These signals are issued based on the user decisions

60

4.8 Graphical User Interface

and are processed by dedicated slots, which request some information from the Operation

Manager (if necessary), and update the state of the GUI.

The brown zone is where the other types of widgets (the gauges) are displayed. The gauges

only show information for a specific point in time. This means that, unlike a time graph where

the user is able to see all the values for the overall time of a session, these elements only

show the value for a particular sample. Hence, when the user selects a given point in time

in a graph, the gauge is updated according to the information for the selected sample. The

gauges requested by the users (illustrated on figure 4.15) were:

1. Bar : displays the value corresponding to the measurement of a sensor for a given time

instant. It is a scale which fills up and down, based on the measured values of a given

sensor.

2. Steering Wheel : measures the value of a sensor in terms of the steering wheel angular

measurement. Hence, it is most suitable for measuring the vehicle steering wheel angle

during the driving.

3. Dial : another type of scale, witht the form of a conventional vehicle manometer. It is

most tailored to measure the engine RPM and the speed of the vehicle.

4. Numeric Gauge: label with the value of a given sensor for a specific time instant.

5. Status Light : a simple coloured bar, displaying a colour based on a sensor value, used

for the evaluation of good and bad state conditions, of a specific sensor. For this type

of gauge, the user defines limits for good and bad values of the sensor, and the gauge

displays green and red lights accordingly.

6. Numeric List : used to display values of several sensors, chosen by the user, for a

specific instant.

The gauges can be added and removed by means of a button available on this zone. A

context menu raises when the user clicks the button, which gives the option to add any type

of these elements. When adding, the user is prompted with the list of sensors, in order to

chose the one(s) he wants to be associated with the gauge. If a gauge has been added, the

user can remove it by mouse right-clicking on the widget.

A already mentioned, these elements are updated when the user selects a particular point

in time to analyse. Hence, the updates on these elements are performed through a slot

connected to the signal which is emitted every time the user selects a point in a graph.

When the user changes the number of existing gauges, the state of the GUI changes. Upon

a change, the red sub-zone content is set to red, and the user is able to save the state of

the GUI. If the user chooses to save the current state of the GUI, the information related to

the existing gauges is stored in the session gauges XML file, as it was previously described.

The information accommodates all the data related to the gauges, such as their type and

their sensors.

61

4. Pit-Station Implementation

The last sub-zone, marked in yellow, is a zone specifically designed to display information

about the sensors under observation. This zone is composed by a tree, which displays

information related to a specific moment in time, together with the measurements of the

sensors for that moment. For a sensor that has a colour already associated with it, its colour

is also displayed as a small icon next to the identification of the sensor. The data in this

zone is updated every time the user selects a specific sample from a graph, or in the case

of a real-time project, once for each new data sample that is received. These updates are

executed by a dedicated slot that defines the update behaviour when selecting a specific

sample, thus updating the graphical display according to information related to that sample.

• Lower zone : This zone has the only purpose of displaying some information to the user.

No user input occurs in this zone. It is used to display to the user, information about the

current working session. Hence, the users can easily visualise some relevant information

not related to the sensors but with the working project. It is populated with two types of

information, required by the users to be always present during the analysis. This includes,

the current selected time on a particular session, and the type of project the user is currently

working on. The first displays the time associated to the sample the user has selected.

When working in real-time mode, this field displays the most updated time instant that was

received from the mobile station. The second, type of project, only displays if the current

project is an offline or real-time project. This field can display None, if no project is loaded,

Offline when users are working offline, and Live when working in real-time.

Both these fields are changed after the user interaction has taken place. The time field is

changed when the user clicks on a given point in time, to analyse information on that point.

The time field can also change without any user interaction when the user is working in a

real-time project. Upon reception of a network message, the Operation Manager processes

the relevant received data, and emits the gathered information to the GUI, in order needed

to update the interface. The type of project changes when the user requests data to be

loaded from the database, start a live session, or when the user terminates working on the

current project.

Accordingly, the updates that are made to this zone are performed inside dedicated slots,

which are executed every time the user performs any operation, or new data is received

from the network, thus affecting the state of the information displayed in this zone.

In summary, the graphical user interface allows the users to perform the type of analysis

hereby considered. It is composed of a single unified main screen for the two types of projects

considered: live and offline. It is through this main screen that the users perform all the operations

related to a session, such as the graphical elements displayed, or to configure information to be

used across sessions, such as the sensors to be considered in the analysis.

The GUI enables the users to manipulate the layout according to its needs, by allowing them to

62

4.8 Graphical User Interface

configure the information to be displayed, as well as the graphical items in which this information

is displayed. The user is provided with an intuitive layout divided according to the needed func-

tionalities, consisting of: an upper zone to perform configuration operations, or creation/loading

session operations; a middle zone where the sensor data is displayed in the graphical widgets;

and a lower zone to display the state of the current analysis.

63

4. Pit-Station Implementation

64

5
Results

Contents
5.1 Summary . 66
5.2 Testing Environment . 66
5.3 Session Management . 66
5.4 Experimental Tests And Results . 67

65

5. Results

5.1 Summary

This chapter provides the conducted evaluation performed of the implemented framework, by

taking into account the set of objectives defined in Chapter 1. For this purpose, a set of tests were

performed and the obtained results analysed. The following sections provide a description of the

test procedures and the corresponding evaluation environments, together with a discussion of the

obtained results.

5.2 Testing Environment

The winter season is usually used by the Formula Student teams to develop and modify their

prototyping vehicles. As a result, the opportunities to test and evaluate the car, and the proposed

framework in particular, in a real racing environment were very few. Consequently, most of the

conducted evaluations had to be done in the FST laboratory at IST. The materials used for these

test scenarios were:

• Mobile station platform, installed in the lab.

• A set of sensors of the car, used to evaluate the platform in real-time operation mode.

• Personal computer to act as pit station.

• Communication infrastructure composed by the wireless router that manages the commu-

nication between both stations, and the Wi-Fi USB adapter that enables communication

to and from the mobile station. The first was installed in between both stations, while the

second was connected to the mobile platform mini-computer through a USB interface.

Section 5.4 describes the development test tools, the conducted tests, the evaluation method-

ology and the obtained results.

5.3 Session Management

As required by the end users, the framework consists on an integrated unified GUI, in order to

accommodate the available functionalities. The procedure that has to be followed to graphically

manage a session’s data is the same if the user is working in a real-time or offline project. This

way, it is easier to apprehend the set of available features and the relationship between them,

which makes the GUI more user-friendly. The screenshots depicted in Figure 5.1 illustrate the

process of initiating any of these types of project, as well as some of the available features.

66

5.4 Experimental Tests And Results

(a) Select the session to be opened. (b) Sarting a real-time session.

(c) Multiple tabs created, with different graphs,
as well as all the available gauges.

(d) Analysing a specific time sample, after
zooming and adjusting the time slider.

Figure 5.1: Process of initiating each type of project, alongside the common process of managing
graphical elements within the screen layout.

5.4 Experimental Tests And Results

5.4.1 Database Insertion Speed

As described earlier, the data gathered from the sensors is made persistent through the Post-

greSQL database. However, to ensure an effective storage of the received data, the rate of

insertion of sensor samples in the database must be enough to cover the rate of reception of data

from the network. To measure the capability of the system to cope with the data reception rate

from the network, a sample testing procedure was used to ensure the validity of the database in-

sertion speed. This should be enough to cope with the maximum reception rate, which according

to [7, 8]), is 13797.05 samples/second from the CAN bus, and 1 samples/second from the GPS

receiver.

The performed test measures the database insertion speed for the new implementation by

using the QtSql module. This test consists in evaluating the capacity of the system to store

data received from the mobile station, using several sampling rates. Figure 5.2 illustrates the

performance of the database, when there are only writing operations being performed, and when

there write and read operations happening simultaneously. It can be observed from the write only

test, that the database can easily cope with the maximum rate at which data is acquired, since the

67

5. Results

number of writing operations that can be performed per second is between 33000 and 34000. For

the read/write test, a thread was used that constantly read data from the database, while other

thread performed the storage operations.

Figure 5.2: Max writing rate of PostgreSQL, when there are only write operations, and when there
are write and read operations simultaneously.

It can be observed that both cases have similar performances, and hence the database can

cope with the writing and reading simultaneously.

Figure 5.3 illustrates a subset of the writing performance test illustrated in Figure.

Figure 5.3: Subset of the write only performance of PostgreSQL.

From Figure 5.3, it can be observed that the new database management implementation can

easily handle the maximum rate at which data arrives at the system.

In regards to the used batch mechanism, a modification is able to be performed due to the

68

5.4 Experimental Tests And Results

better multi-transactional handling performed by the PostgreSQL. It can be observed from Figure

5.3 that the speed performance is constant, about 5 ms, until the sampling rate is around 100

samples/second. This would mean that, if the batch mechanism is executed at a rate at which 70

samples or less are stored in the database, the insertion speed would not handle the maximum

possible rate at which data can arrive at the system. However, this can be achieved if the batching

mechanism is set to be executed for 70 samples or more. Hence the timeout for executing the

batch mechanism, which was every 1 second in the previous version of the framework, was

set to 5 ms, which is the time needed to received 70 samples if the maximum sampling rate

is considered. Thus, this makes the storage of data much more accurate, without affecting the

performance of the application.

5.4.2 Network Communication Speed

In a real-time session, it is important that the network throughput is enough to deliver all the

messages containing data from the car sensors. To evaluate the performance of the framework

communication protocol, a sample test was performed in which data was transmitted from the

mobile to the pit station. The test consisted in transmitting a set of data with 16 MB using several

network packet sizes, and evaluate the time taken to transmit the whole data. The results are

depicted in Figure 5.4.

Figure 5.4: Transmission time required to send 16MB to the pit station, by using several network
packet sizes.

Due to limitations on the mobile station hardware, the maximum network packet size was

2048 bytes. This is because the hardware does not support a Maximum Transmission Unit (MTU)

greater than 2274. However from the above figure, it can be observed that there is a significant

network overhead when the packet size is small, causing a larger number of packets to be trans-

mitted. Thus, it can be concluded that there is a clear advantage of including more data within a

single network packet.

69

5. Results

5.4.3 Mathematical Engine Performance

The execution performance of the mathematical manipulations is crucial, particularly when

gathering data in real-time. Therefore, the evaluation speed of the muParser had to be analysed,

in order to make sure that it would be enough for the gathering rate of the sensor measurements. A

set of benchmarks, illustrated in Figure 5.5, were used for this purpose, showing the performance

of this library for some of the processing formulas used by the team for processing the received

data. The test consisted in evaluating this set of formulas, considering different data reception

rates. The library should be able to cope with the maximum data reception rate (according to [7,

8]), 13797.05 samples/second from the CAN bus, and 1 samples/second from the GPS receiver).

The set of post-processing formulas, where filter represent the raw value received from the

mobile station, used in the conducted test is the following:

• RPM: ((78125/filter)*60/2)/1000.0

• Acceleration: (465-filter)/213.6

• Tire temperature: filter*0.02-273.15

• Throttle: filter * 100.0 / 4096.0

• Displacement: filter*10.0/65536.0

Figure 5.5: muParser speed performance, evaluated for several sampling rates.

As expected, there is an increase in the time taken to evaluate the expressions, as the sam-

pling rate grows. Nevertheless, it can be observed that for the maximum possible data acquisition

rate (see [7, 8]), the time needed for evaluating the expressions is not an issue. Hence, it can be

concluded that for the type of post-processing analysis herein considered, the library can easily

handle the data acquisition rate.

70

5.4 Experimental Tests And Results

5.4.4 Multiple Operating System Support

One of the main objectives of this project was to turn the pit station side of the framework

into an operating system independent application. As described earlier, this was obtained by

using the Qt Framework in the development of the new version, which provided the necessary

cross-platform API to implement the needed functionalities.

Hence, tests were conducted in all the targeted operating systems to prove the framework

capability of being used in all of them. Figure 5.6 shows the framework look and feel for the

different target operating systems. The cross-platform features are managed by Qt Framework in

all of them.

(a) Framework main screen under Linux. (b) Framework main screen under Mac.

Figure 5.6: Framework look and feel, for analysis performed under Mac and Linux.

5.4.5 Sensor Data Analysis

The most important characteristic of the framework is to provide the means to analyse the data

gathered in a testing session, from the sensors installed in the car. This section demonstrates the

capacity of the system in handling the data that is gathered in a testing session performed by the

team. Since no test could be performed on track, this example represents an analysis session,

using an offline project, loaded from a data file containing the sensor data. The working session

is illustrated in Figure 5.7, Figure 5.8 and Figure 5.9.

It can be observed that the GUI can accommodate a diverse set of graphical widgets to display

the information gathered from the sensors. Particularly, the framework includes all the required

scientific widgets, in terms of graphs and gauges, displaying information in several formats. This

set of widgets include the new widget created specifically for the GPS module, integrated into

the overall application. For the graphs, the information can be displayed in a time based manner,

trough time-graphs, as a relationship between two sets of data, as an historical frequency analysis

of the data gathered in a session, or in a track map. For the gauges, the information is displayed

71

5. Results

for a single instant in time, but through several graphical representations which are tailored for

different situations, in order to facilitate their analysis. For example, to evaluate the angle of the

steering wheel in an instant, a Steering Wheel gauge should be used, in order to graphically

facilitate its study.

In summary, the users are able to manage the graphical layout, by choosing which widgets

they want to display information and which data they want to be presented in these widgets, and

hence, adapt it to their specific needs.

Figure 5.7: Offline session with scatter plot. This type of plot is an X-Y graph, in which each axis
is filled with values from one sensor. This graph is used to evaluate the variation of one sensor in
relation to another.

Figure 5.8: Offline working session with an histogram. This graph displays a set of bars, which
represent the frequency of a range of values in a given session.

5.4.6 End-Users Feedback

The main motivation for this project was to develop a useful system, that enabled the FST IST

team to perform vehicle condition analysis both in real-time and offline. The system should be

used by the team in their working sessions, be helpful in their decisions and thus improve their

72

5.4 Experimental Tests And Results

Figure 5.9: Offline working session with a gps track map. The interface for this widget is an
adaptation of the interface used in the previous version of the framework. The user can chose
any sensor, and browse through the acquired map coordinates to analyse the sensor values for
any of them.

productivity. To evaluate their satisfaction with the end result, feedback was gathered to determine

the success of the system. The following is a set of statements from two of the FST IST team

leaders which were involved in the development process from the beginning:

• ”Looking at João’s final solution it does seem to be a good prototype for a data acquisition

system’s interface for the following reasons: It follows the main guidelines in regard to the

layout of the menus, charts/graphs areas, etc. more or less specified by the suspension,

vehicle dynamics and electronics teams which are undoubtedly the areas where reside most

of the potential benefits from this tool. It has a reworked core implementation that will allow

for a new level of customization, that formerly prevented previous interfaces designed for this

system not to be adopted by the team. Namely it allows for complete freedom in choosing

the number and meaning of each CAN ID being used, which means arbitrary number of

sensors and IDs reassignment. I was demoed in lab conditions with some hardware and

software designed for the car’s side of the system, already surpassing the ’proof of concept’

status. Compared to other teams systems, it seems to allow better modularity making it

a tool, not for the previous car prototype, not for the current one, but for the future ones,

putting IST’s team on the right track not only to equal but even surpass competing teams.” -

Bruno Santos, Ex-Electronics & Propulsion team leader.

• ”From the contact I had with the application and João’s work in the lab, the application en-

ables the evaluation of various parameters of the vehicle in real-time take decisions based

on these. It also allows to run previous stored logs to evaluate the behavior of the vehi-

cle and and get to know better what should be improved. It allows to chose how to treat

the gathered measurements, which makes our work easier as it displays immediately the

needed information. The fact that we can chose how the information is displayed is an added

73

5. Results

value since we can define the best output tailored to specific needs. When we manage to

be familiarized with the application it is going to be easier to work on the several parameters

of the car that are being observed, which will enable faster improvements on the vehicle. -

Daniel Pinho, Electronics team leader.

From this, it can be concluded that the main goals for the framework in what regards to the

satisfaction of the end users team were achieved, since the team are now comfortable to use it

as a means to analyse the data gathered from the car during the practice sessions and hence,

improve the quality of these.

74

6
Conclusions

Contents
6.1 Conclusions . 76
6.2 Future work . 78

75

6. Conclusions

6.1 Conclusions

This work aimed to offer an added value to the FST IST team analysis sessions tools, used

to analyse the data that is gathered from the car sensors in order to prepare its vehicles for

competitions. In particular, it aimed to obtain a great improvement on the quality of the data

analysis and visualisation and a consequent reduction in the time needed to prepare the vehicle

prototypes. Although it is a follow-up to a series of works that were previously performed, it was

developed as a complete new system. This was done to avoid the undesirable effects suffered in

the previous works, which were related to the lack of integration between all the system elements.

Hence, designing the system from scratch, considering the full set of requirements desired by the

users, would intrinsically integrate all the system components.

Since this is a user oriented work, the main goal that had to be accomplished in order to

succeed was to create a software usable and useful for the team. Therefore, the major factor

affecting the success of the project was the contact with the targeted users. This permanent

contact with the users aimed the accomplishment of a system that pleases all the types of users

within the team, both in terms of graphical presentation and system functionalities. This means

that, in terms of graphical interface, users should be comfortable with the working environment that

is provided. This is one of the most important element since this is the point of interaction between

the users and the system, and therefore may or may not drive them to use it. Furthermore, in

terms of that set of offered functionalities, the system should cater the user needs relating to the

evaluation of vehicle conditions during a testing session, and provide the necessary means for

the required physical analysis.

However, there was another important party to take into account during the system devel-

opment: other possible developers that may arise to improve the system. Hence, the system

was designed to provide easy means for future project evolutions based on the version herein

presented.

In general, the development process can be divided into several phases that were conducted

to accomplish the goals mentioned above. It can be described in the following:

1. Gather with the users, to define the system requirements.

2. Decide which modules from the previous version could be used in the new version. For

instance, the GPS module implementation was kept in the new version. In regard to the

communication protocol used in the previous version, its architecture and design were con-

sidered for the new version, but a new implementation had to be made.

3. Develop the architecture for the system.

4. Iterative process of system development, alongside the end-users, which comprised two

main activities: designing and developing the graphical user interface; and implementation

of the required functionalities.

76

6.1 Conclusions

5. Perform the necessary tests to evaluate the success of the project. These were evaluated

according to the user requirements and objectives defined for the project. In general terms,

this means the user acceptance of the graphical interface and correctness in performing the

desired functionalities.

Summarizing, the improvements made to the previous version of the project, in terms of added

value to the team, they can be divided into several categories, namely, one for each module

present in the system:

• Regarding the communication protocol, improvements were introduced which enable the

different users to use the system in several operating systems, namely, Windows, Linux and

Mac. Another main benefit was introduced by restructuring the network packets used by the

communication protocol, turning it independent from the data sent, and hence, enabling the

customization of the content exchanged between the two stations.

• It was decided to change the database management system, aimed to significantly improve

the following aspects of the database: speed performance in a multi-transactional environ-

ment. This enabled the storage of the data at a faster pace than the one in the previous

version, and hence, have a more accurate database management implementation.

• The addition of the XML management module introduced one major improvement: it re-

moved the need (for the users) to know how to work directly over the DBMS every time they

wanted to change any information for the application, and thus it added a level of flexibility

that was formerly missing. It enables the users to easily configure several types of informa-

tion to adapt the analysis to their profiles. They can manage which, and how, the data is

considered by the application and thus, manage all the information they need to analyse at

a specific moment.

• The addition of the mathematical module significantly improved the quality of the analysis. It

provides features to manipulate the information related to the sensors installed in the mobile

station. These manipulations correspond to mathematical formulas that are applied to the

sensor’s data, in order to obtain a new set of data that is useful for the analysis.

• The graphical user interface provides a single and unified working environment for the end

users. The design of the interface was performed with the involvement of the end users to

better cater their needs and accommodate their working styles. The interface is adaptable

to various users profiles, giving them the possibility to analyse and compare different data

in multiple graphs and gauges and to browse a graph data based on a timeline mechanism.

Essentially, the points mentioned above were the ones that were mainly missing from the

previous versions of the system, resulting in a incorrect attendance of the users’ needs and be-

haviours. This changed with the new version of the system, since there was a great effort put into

cater what were the requirements and working styles of the end users, in order to best provide

77

6. Conclusions

the means for them to perform their tasks in an easy and intuitive way. This was validates by the

feedback given by the end users.

6.2 Future work

Since the technology is constantly evolving, new methods for improving the performance of

real-time analysis and graphical presentation are always appearing. This project has been ini-

tiated some years ago, and since its inception it has been the target of several improvements.

However, there is always room for extra improvements, and these do not mean improving only

the system capabilities, such as performance, but also extending the set of provided features, by

adding more relevant functionalities, or by improving system usability. Moreover, since this is an

academic project, new needs arise in short time periods, as new students are always entering into

the FST IST team, and the used technology in the cars continues to evolve. This section presents

some of future enhancements that would likely be useful for future analysis provided by the users.

The new version of the framework does already cater the most relevant needs for the team to

perform helpful analysis, either in real time or from data previously stored. The team can already

take some benefits from the analysis made in the framework, and have its productivity improved.

The following items describe possible improvements to be made to increase the advantages of

the framework for the analysis sessions:

• Although the existing graphics that are made available to the user already fulfils the user’s

needs, having 3-D graphics would give the user additional means of analyzing data. 3-D

graphics would be useful for instance as a standard time graphic, like the one presented in

this thesis, but it could be used for comparing values from one sensor to another. The third

dimension would be assigned to the time.

• Add a zoom-by-dragging mechanism. The user should be able to pick a time range in the

graph which he wants to zoom in. This should be accomplished by a mouse drag mechanism

associated to a plot which selects, and momentaneously highlights, the zone comprised in

the user selection. When the user finishes his selection, the graph should be zoomed in to

show the selected zone in more detail.

• Put more data in network messages sent from the mobile station. This means having the

network messages comprise data from more than one sensor. This would reduce the num-

ber of messages sent from the mobile to pit station and vice versa. It would mean that

instead of generating a new timestamp for each value gathered in the CAN bus, a value

could be generated each time a set of values was gathered, thus increasing the precision of

time of a given sensor value.

• It would be very helpful to be able to communicate with the driver when performing a testing

session. Likewise, it would be very helpful to analyse how the driver is behaving on the

78

6.2 Future work

track, by view images from the race in real time. For these purposes, and to further add

quality to the analysis session, the necessary adaptations in the framework should be made

in order to add this functionalities.

79

6. Conclusions

80

Bibliography

[1] The PostgreSQL Global Development Group, PostgreSQL 9.3.1 Documentation, http://

www.postgresql.org/files/documentation/pdf/9.3/postgresql-9.3-A4.pdf.

[2] MySQL, MySQL Reference Manuals 5.6 Reference Manual, http://downloads.mysql.com/

docs/refman-5.6-en.a4.pdf, 2013.

[3] SQLite Database, SQLite documentation, http://www.sqlite.org/docs.htm.

[4] Formula Student, http://www.formulastudent.com/.

[5] Projecto IST formula student, http://www.projectofst.com.

[6] David Rua Copeto, Automotive data acquisition system - FST, Master’s thesis, IST, 2009.

[7] Paulo Fernandes Mendes, Formula student racing championship: design and implementa-

tion of the management and graphical interface of the telemetry system, Master’s thesis, IST,

2011.

[8] Diogo Rafael Bento Carvalho, Formula Student Racing Championship: Design and imple-

mentation of an automatic localization and trajectory tracking system, Master’s thesis, IST,

2012.

[9] MoTeC products specification, http://www.motec.com.au.

[10] MoTeC interpreter manual, http://www.motec.com/filedownload.php/Interpreter_

\Manual_A5.pdf?docid=1084.

[11] MoTeC i2 software brochure, http://www.motec.com.au/filedownload.php/i2%

20Brochure.pdf?docid=2388.

[12] McLaren ATLAS, http://www.mclarenelectronics.com/Content/Products/ATLAS/

ATLAS.pdf.

[13] Cosworth Toolbox, http://cosworth.com/products/racing-electronics/software/

toolbox/.

[14] Formula SAE, http://students.sae.org/competitions/formulaseries/.

[15] FIA Formula 1 2013 technical regulations, http://www.fia.com/sites/default/files/

regulation/2013-F1-TECHNICAL-REGULATIONS-111212.pdf.

[16] Linear Interpolation, http://www3.nd.edu/~jjwteach/441/PdfNotes/lecture5.pdf.

[17] wxWidgets Cross-Platform GUI Library, http://docs.wxwidgets.org/3.0/.

[18] GTK+ Multi-Platform Toolkit, https://developer.gnome.org/gtk3/stable/.

81

http://www.postgresql.org/files/documentation/pdf/9.3/postgresql-9.3-A4.pdf
http://www.postgresql.org/files/documentation/pdf/9.3/postgresql-9.3-A4.pdf
http://downloads.mysql.com/docs/refman-5.6-en.a4.pdf
http://downloads.mysql.com/docs/refman-5.6-en.a4.pdf
http://www.sqlite.org/docs.htm
http://www.formulastudent.com/
http://www.projectofst.com
http://www.motec.com.au
http://www.motec.com/filedownload.php/Interpreter_\Manual_A5.pdf?docid=1084
http://www.motec.com/filedownload.php/Interpreter_\Manual_A5.pdf?docid=1084
http://www.motec.com.au/filedownload.php/i2%20Brochure.pdf?docid=2388
http://www.motec.com.au/filedownload.php/i2%20Brochure.pdf?docid=2388
http://www.mclarenelectronics.com/Content/Products/ATLAS/ATLAS.pdf
http://www.mclarenelectronics.com/Content/Products/ATLAS/ATLAS.pdf
http://cosworth.com/products/racing-electronics/software/toolbox/
http://cosworth.com/products/racing-electronics/software/toolbox/
http://students.sae.org/competitions/formulaseries/
http://www.fia.com/sites/default/files/regulation/2013-F1-TECHNICAL-REGULATIONS-111212.pdf
http://www.fia.com/sites/default/files/regulation/2013-F1-TECHNICAL-REGULATIONS-111212.pdf
http://www3.nd.edu/~jjwteach/441/PdfNotes/lecture5.pdf

Bibliography

[19] Qt Development Framework, Qt Reference Documentation, qt-project.org/doc/qt-5.1/.

[20] Qwt library, http://sourceforge.net/projects/qwt/files/qwt/6.1.0/qwt-6.1.0.pdf/

download.

[21] Lagrange Polynomials, http://www3.nd.edu/~jjwteach/441/PdfNotes/lecture6.pdf.

[22] Lagrange Polynomials, https://ccrma.stanford.edu/~jos/pasp/Lagrange_

Interpolation.html.

[23] Nearest-Neighbour Interpolation, http://sepwww.stanford.edu/public/docs/sep107/

paper_html/node20.html.

[24] MathPresso Library, https://code.google.com/p/mathpresso/.

[25] Matlab Compiler Runtime, http://www.mathworks.co.uk/help/compiler/

working-with-the-mcr.html

[26] muParserSSE Library, http://beltoforion.de/muparsersse/math_expression_

compiler_en.html

[27] muParser Library, http://muparser.beltoforion.de/

[28] SMS Networks, SMSWEBT-G EZ Connect g 108 Mbps, http://www.smc-asia.com/files/

MN_SMCWEBT-G_EN_0708_FW_B011.pdf

82

qt-project.org/doc/qt-5.1/
http://sourceforge.net/projects/qwt/files/qwt/6.1.0/qwt-6.1.0.pdf/download
http://sourceforge.net/projects/qwt/files/qwt/6.1.0/qwt-6.1.0.pdf/download
http://www3.nd.edu/~jjwteach/441/PdfNotes/lecture6.pdf
https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html
https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html
http://sepwww.stanford.edu/public/docs/sep107/paper_html/node20.html
http://sepwww.stanford.edu/public/docs/sep107/paper_html/node20.html
https://code.google.com/p/mathpresso/
http://www.mathworks.co.uk/help/compiler/working-with-the-mcr.html
http://www.mathworks.co.uk/help/compiler/working-with-the-mcr.html
http://beltoforion.de/muparsersse/math_expression_compiler_en.html
http://beltoforion.de/muparsersse/math_expression_compiler_en.html
http://muparser.beltoforion.de/
http://www.smc-asia.com/files/MN_SMCWEBT-G_EN_0708_FW_B011.pdf
http://www.smc-asia.com/files/MN_SMCWEBT-G_EN_0708_FW_B011.pdf

A
Appendix A

Contents
A.1 Communication Protocol . 85

83

A. Appendix A

84

A.1 Communication Protocol

A.1 Communication Protocol

The communication protocol implemented in the framework was developed in the scope of a

previous thesis [7] with the aim of offering some resilience to faults. This means that it is prepared

to deal with packet, and connection losses. To accomplish this, a communication recovery mech-

anism was developed and implemented on both stations. When in sender role, the peer stores

each sent packet in a circular list, only used for packets which were already sent, and where it

will be temporarily available in case a retransmission is required. This circular list of already sent

packets is statically allocated and has a fixed size. In line with this, when a packet is received, an

acknowledgement packet is sent from the receiver. Only when the original sender of the packet

receives the acknowledgement packet, will it remove the corresponding packet from the circular

list. Retransmission of packets is required in two situations:

• One communication party explicitly requests a packet to be retransmited. This can occur

when the receiver of that packet checks that the checksum computed for the packet received

does not correspond to the one sent in the received packet. It can also occur if a packet is

received out of order, in which case the receiver requests the packet with the number it is

expecting to receive;

• A time out occurs for the maximum tolerated waiting period associated to an acknowledge-

ment message of a particular packet. This means that either the message associated to the

packet itself or the acknowledgement packet was lost.

As part of the sending procedure, an additional mechanism was developed to give some packets

a higher priority than others when information is about to be transmitted. The reason is that

some of the sensors are considered more relevant than others, and so the packets carrying their

information should be sent ahead of the others. To accomplish this, three types of priority queues

were developed, where packets are stored before being sent. These priority queues are used as

temporary waiting queues for messages that are ready to be sent. The process of storing packets

in these queues is described later in this section. The three types correspond to the priority level

associated to each packet: high, medium, and low priority queues. The priority of each packet

was assigned based on the identifier of the sensor being read. The range of identifiers assigned

to each priority queue is depicted on Table A.1. This way, it is ensured that packets from sensors

Priority ID
High 0 - 32768

Medium 32769 - 49152
Low 49153 - 65536

Table A.1: Mapping between transmission priority level and session identifiers [7].

connected to the CAN bus will have the highest priority, since their identifiers are always kept

in the range of 0 - 2048. The medium and low priority queues are used for audio and video,

85

A. Appendix A

respectively. These two lower priority queues have a fixed size. This is justified by the fact that, for

audio and video (sequence of Joint Photographic Experts Group (JPEG)s), it is only relevant to

listen to or watch the most updated information being transmitted from the car. As a consequence,

when they are full and a new packet is to be sent, the oldest one is discarded. Hence, regarding

the process of transmitting a packet, the framework is structured according to these two logical

sides: the sender and the receiver side. From the sender point of view, when a message is ready

to be sent, the priority queues are first searched. The identifier of the sensor responsible for the

data in the packet is then used to check the corresponding priority queue for emptiness. If the

queue is not empty, the packet is temporarily stored, for later transmission. Otherwise, the packet

is sent right away, and stored in the circular list of sent packets. In case the send process fails,

the packet is stored back in its priority queue for later transmission. This process is depicted on

Figure A.1.

Figure A.1: Process of transmitting a packet.

As it was mentioned earlier, the already sent packets are temporarily stored in a circular list

and they are kept there until the corresponding acknowledgement packet is received. Only when

an already sent packet is removed from the sent packets list, can a new packet be removed from a

priority queue. In this situation, the priority queues are searched, starting from the queue with the

highest priority. If one non-empty queue is found on this process, the first packet from that queue

is sent, removed from its priority queue, and stored in the sent packets circular list. In case there

is a failure while sending this packet, it remains in its priority queue. This process is depicted on

Figure A.2.

On the other side, there is the party who receives the packets. From the receiver point of

view, two lists are maintained to store the received packets. One of these lists stores packets

86

A.1 Communication Protocol

Figure A.2: Management of the priority queues in the packet transmission procedure.

that can already be processed. This is the case when all previous packets that were sent before

them have already been received. This is checked based on the packet number sent in each

network message. The other list stores packets received out of order, preventing unnecessary

retransmission of packets. The list of out of order packets have a fixed size. Hence, packets

are only stored in this list in case the packet number is within a boundary window, which has the

same size as the circular list of sent packets mentioned earlier. In short, if a received packet has

the expected packet number, it is stored directly on the list of ready to be processed packets.

Otherwise, the packet is stored in the list of out of order packets and removed when all packets

that were sent before it have been received. The flow of actions performed when a packet is

received is illustrated on Figure A.3.

Both stations act as sender and receiver, although under normal circumstances, the mobile

station is supposed to act more like a sender, because the relevant data is produced here, and

the pit station more like a receiver, because relevant data is to be received and shown to users

here. A detailed description of the protocol can be found in [7].

87

A. Appendix A

Figure A.3: Management of received packets.

88

B
Appendix B

Contents
B.1 Lagrange Polynomial . 91

89

B. Appendix B

90

B.1 Lagrange Polynomial

B.1 Lagrange Polynomial

Lagrange Polynomial [21, 22] is an algorithm for creating sets of new data points within a set of

known data points. It belongs to the set of polynomial interpolation algorithms, which means that

for a set of given points, it finds a polynomial that goes through all of them. Technically speaking,

given a set of N+1 known samples as follows:

(x0, y0), ..., (xj , yj), ..., (xN , yN) (B.1)

with:

j = 0, 1, 2, ..., N

the problem is to find the unique order N polynomial g(x) which interpolates the given samples.

Figure B.1 illustrates the an example with f(x) representing an exact function of which only the

N+1 points are known, and g(x) the interpolation function which will pass through all the known

points.

Figure B.1: Lagrange exact N+1 points function and correspondent N degree interpolation poly-
nomial [21].

The solution to the problem, is expressed as the result of the following equation:

g(x) =

N∑
k=0

lk(x)f(xk) (B.2)

with:

f(xk) = f(x) evaluated at pointxk

and:

lk(xj) =

{
1 j = k

0 j 6= k
(B.3)

91

B. Appendix B

To exemplify, imagine that five samples were known, (x0, x1, x2, x3, x4), which means that N = 4.

To evaluate the interpolated function in for example, sample x2, the procedure is the following:

g(x3) = f0l0(x3) + f1l1(x3) + f2l2(x3) + f3l3(x3) + f4l4(x3) (B.4)

From the definition given above, the result is:

g(x3) = f0 × 0 + f1 × 0 + f2 × 0 + f3 × 1 + f4 × 0 = f3 (B.5)

So, to construct the polynomial function lk(x), we start by defining the following polynomial:

wk(x) = (x− x0)(x− x1)(x− x2) . . . (x− xk−1)(x− xk+1)(x− xN) (B.6)

which satisfies the property stated above, with wk having roots at all samples except xk. The only

drawback is that the polynomial wk(x) is not equal to one at xk. So, in order to obtain a final result

of one at xk, the polynomial must be normalized, obtaining lk(x), yielding:

lk(x) =
(x− x0)(x− x1)(x− x2) . . . (x− xk−1)(x− xk+1)(x− xN)

(xi − x0)(xi − x1)(xi − x2) . . . (xi − xk−1)(xi − xk+1)(xi − xN)
(B.7)

With the equation defined above, the both criteria are satisfied, lk(x) evaluating to one at xj for

j = k and evaluating to zero at any j 6= k. The above equation is more commonly defined as:

lk(x) =

N∏
j=0,j 6=k

(x− xj)

(xj − xk)
(B.8)

To illustrate the presented algorithm, consider an example for which N = 2, and the following set

of points:

x0 = 3 f0 = 1

x1 = 4 f1 = 2

x2 = 5 f2 = 4

To find the interpolation polynomial g(x), the following lk(x) are define:

l0(x) =
(x− 4)(x− 5)

(3− 4)(3− 5)
, l1(x) =

(x− 3)(x− 5)

(4− 3)(4− 5)
, l2(x) =

(x− 3)(x− 4)

(5− 3)(5− 4)
, (B.9)

The resulting interpolation polynomial results in:

g(x) = 1× l0(x) + 2× l1(x) + 4× l2(x) (B.10)

Figure B.2 illustrate the process of obtaining the above interpolation polynomial.

92

B.1 Lagrange Polynomial

Figure B.2: Process of creating an interpolation polynomial of degree two [22].

93

B. Appendix B

94

C
Appendix C

Contents
C.1 Installation Guide . 97

95

C. Appendix C

96

C.1 Installation Guide

C.1 Installation Guide

In order to have the full features available to run the pit station side of the framework, the

following instructions should be taken:

1. Download and install the PostgreSQL 9.3 bynary packages for the operating system in use

from http://www.postgresql.org/download/. During the installation several questions will

arise, of which the following are preponderant for the hereby presented software:

• Configure the superuser for the database server created, setting the password to fst-

database.

• Set the database server to listen on port 5432.

The figure below illustrates the steps above in Windows, but it should be the same for the

others:

(a) Set the username and password as above. (b) Create the server listening on the specified
port as above.

Figure C.1: Installation steps for configuring PostgreSQL.

In case of Windows these should be installed under the directory C:\PostgreSQL. In case

of Linux this should be installed under the directory etc/. For last, in case of Mac, install

PostgreSQL under the directory /Library/PostgreSQL.

2. Download and install the Matlab Compiler Runtime 2012a binary packages for the target op-

erating system from http://www.mathworks.com/products/compiler/mcr/. Install it un-

der the default directory provided by the installer for all the operating systems.

3. Download and install Qt Framework binary packages in the target operating system from

http://qt-project.org/downloads. Install it in the default directory provided by the in-

staller during the installation for all operating systems. During the installation process, a

dialogue will appear which prompts the user to select which components to include in the

installation. The user should tick the box that says Source Components as in the figure

below:

97

http://www.postgresql.org/download/
http://www.mathworks.com/products/compiler/mcr/
http://qt-project.org/downloads

C. Appendix C

Figure C.2: Qt installation step where the user should tick the box corresponding to Source Com-
ponents.

Once finished there is a couple of steps that need to be performed to integrate with the Post-

greSQL. These are covered in detail in http://qt-project.org/doc/qt-4.8/sql-driver.

html#qpsql, so just follow the instructions given for the target operating system.

4. The last step before being able to run the application is to install Qwt Library. First download

version 6.1.0 from http://sourceforge.net/projects/qwt/files/qwt/6.1.0/. Then fol-

low the Build and installation instructions on http://qwt.sourceforge.net/qwtinstall.

html for the target operating system.

5. Install the framework application.

98

http://qt-project.org/doc/qt-4.8/sql-driver.html#qpsql
http://qt-project.org/doc/qt-4.8/sql-driver.html#qpsql
http://sourceforge.net/projects/qwt/files/qwt/6.1.0/
http://qwt.sourceforge.net/qwtinstall.html
http://qwt.sourceforge.net/qwtinstall.html

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Acronyms

	1 Introduction
	1.1 Scope
	1.2 Motivation
	1.3 Objectives
	1.4 Main contributions
	1.4.1 Data Management
	1.4.2 Data Processing
	1.4.3 Time Line
	1.4.4 Data Presentation

	1.5 Dissertation outline

	2 Related Work and Supporting Technologies
	2.1 Summary
	2.2 Industrial/Commercial And Academic Solutions
	2.2.1 McLaren
	2.2.2 MoTeC
	2.2.2.A MoTec i2 Standard and MoTeC i2 Pro
	2.2.2.B MoTec Telemetry Monitor

	2.2.3 Academic Solution

	2.3 Supporting Technologies
	2.3.1 Qt Framework
	2.3.2 Qwt Library
	2.3.3 PostgreSQL
	2.3.4 muParser

	2.4 Existing Hardware Infrastructure
	2.4.1 Mobile Station
	2.4.2 Pit Station
	2.4.3 Communication Infrastructure

	3 System Architecture
	3.1 Overview
	3.2 Communication
	3.3 Mobile Station Architecture
	3.4 Pit Station Architecture

	4 Pit-Station Implementation
	4.1 Summary
	4.2 Cross-Platform Application Framework
	4.3 Framework Communication Implementation
	4.4 Database Management and Implementation
	4.5 XML Data Manager
	4.5.1 Sensors Management
	4.5.2 User Preferences
	4.5.3 Car Tuning Parameters
	4.5.4 Graphical Elements
	4.5.5 Sensor Post-Processing

	4.6 Sensor Data Processor
	4.6.1 Single Sensor Manipulation
	4.6.2 Combinational Sensor Manipulation

	4.7 Operation Manager
	4.8 Graphical User Interface
	4.8.1 Graphical Layout

	5 Results
	5.1 Summary
	5.2 Testing Environment
	5.3 Session Management
	5.4 Experimental Tests And Results
	5.4.1 Database Insertion Speed
	5.4.2 Network Communication Speed
	5.4.3 Mathematical Engine Performance
	5.4.4 Multiple Operating System Support
	5.4.5 Sensor Data Analysis
	5.4.6 End-Users Feedback

	6 Conclusions
	6.1 Conclusions
	6.2 Future work

	Bibliography
	A Appendix A
	A.1 Communication Protocol

	B Appendix B
	B.1 Lagrange Polynomial

	C Appendix C
	C.1 Installation Guide

